
[544] Linux Pipelines
Meenakshi Syamkumar

Learning Objectives

• chain multiple Linux programs together into a pipeline
• redirect process output to a file
• observe resource consumption on Linux

Unix Philosophy

Designing Data Intensive Applications ("Batch Processing with Unix Tools" of Chapter 10)

Supplemental Reading:

1. "Make each program do one thing well. To do a new job,
build afresh rather than complicate old programs by adding
new 'features'."

2. "Expect the output of every program to become the input to
another, as yet unknown, program. Don’t clutter output with
extraneous information. Avoid stringently columnar or binary
input formats. Don’t insist on interactive input."

https://www.madisonpubliclibrary.org/resources/eresources/oreilly-public-libraries-tech-ebooks-and-digital-learning

The Pipe

the pipe connects output of one process to input of the next

Standand Input and Output (I/O)

process A

stdin stdout

stdout => stdin

process A

stdin stdout

Command:
A | B

process B

stdin stdout

Chains can be long

process A

stdin stdout

Command:
A | B | C

process B

stdin stdout

process C

stdin stdout

stderr (for things like warnings that shouldn't be chained)

process A

stdin stdout

Command:
A | B | C

process B

stdin stdout

process C

stdin stdout

stderr stderr stderr

Redirection

process A

stdin stdout

stderr

Command:
A

Redirection

process A

stdin stdout

stderr

Command:
A > output.txt

output.txt

Redirection

process A

stdin stdout

stderr

Command:
A > output.txt 2> errors.txt

output.txt

errors.txt

Redirection

process A

stdin stdout

stderr

Command:
A &> output.txt

output.txt

Async
PROMPT> slowprogram
...running...
PROMPT>

normally, shells commands
are syncronous, meaning

you wait for the last
command to finish before
another prompt appears.

PROMPT> slowprogram &
PROMPT>

ampersand at the end runs
it in the background. you
get a prompt immediately

All together

Command:
A | B &> out.txt &

All together

Command:
A | B &> out.txt &

process A

stdin stdout

process B

stdin stdout

stderr stderr

out.txt

This pipeline will run in the background (perhaps for a long time), and
we won't see the output. BUT we can find it later in the out.txt file.

Demos...

