[544] PyTorch Basics

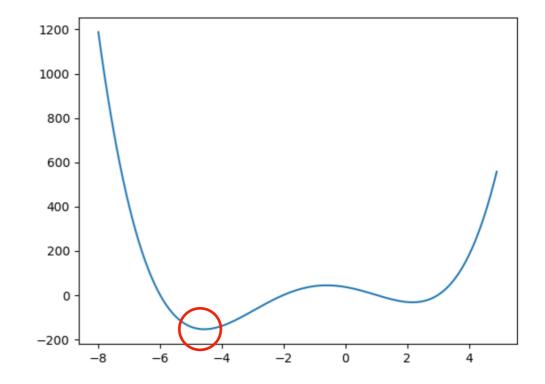
Meenakshi Syamkumar

Learning Objectives

- deploy JupyterLab with PyTorch inside a Docker container
- compare different numeric types in terms of space requirements, range, and precision
- perform calculations on PyTorch tensors
- formulate models as functions that multiply input data by parameters

PyTorch Uses

- 1 Floating point operations
 - scientific computing, machine learning
 - matrices, linear algebra
 - seamless: on CPU or GPU
 - distributed computing
- 2 Optimization
 - y = f(x)
 - which x makes y smallest? (or largest?)



- Machine learning:
 - what parameters yield best performance metrics for some data?
 - simple example: y = b * x + c what b and c parameters give the best fit?
 - deep learning
 y = sigmoid(sigmoid(data @ matrix I + bias I) @ matrix 2 + bias 2)

Python Numeric Types (Built In)

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

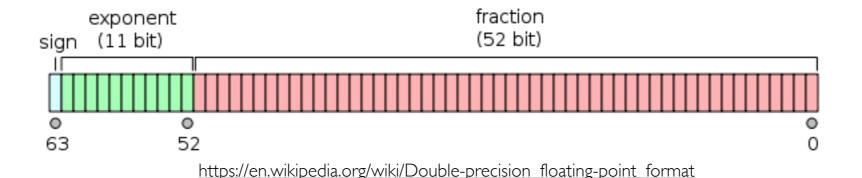
Python Types

ints

no maximum/minimum size (Python is unusual in this way) bigger/smaller values => more bits necessary

floats

usually 64 bits ("double precision"; 32 bits would "single precision") like exponential notation (1.23×10^2), but in binary instead of decimal min/max size. Inf, -Inf, NaN have special bit combinations



complex

real and imaginary represented as two floats not covered in 544

Other Numeric Types

Common numeric types that (a) CPUs can directly manipulate and (b) PyTorch supports

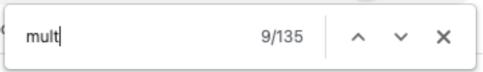
- integers: uint8, int8, int16, int32, int64
- floats: float I 6, float 32, float 64
- names specify bits, float vs. int, and signed ("u" => unsigned)
- dtype (data type)

```
import torch
x = torch.tensor(3.14, dtype=torch.float16)
PyTorch float16
Python float
```

```
print(x.element_size()) # 2 bytes (instead of 8)
```

Tradeoffs: precision, range, memory usage

Hardware Support



•••	•••
<u>MULPD</u>	Multiply Packed Double Precision Floating-Point Values
MULPS	Multiply Packed Single Precision Floating-Point Values
MULSD	Multiply Scalar Double Precision Floating-Point Value
MULSS	Multiply Scalar Single Precision Floating-Point Values
<u></u>	

https://www.felixcloutier.com/x86/

Hypothetical Scenario: all the ints in your dataset fit nicely in 3 bytes. Should you come up with a new integer byte representation?

Pro: utilize memory more efficiently based on your use case

Con: your CPU won't have instructions for working with this new type. Solutions:

- perform the multiplication in software instead of hardware (slow!)
- keep the data in your 3-byte format but convert to a regular 4-byte it on an asneeded basis to do calculations (slow!)

Common to have one form for computation, another for storage, messages, etc.

Demos...