544 Py lorch Basics

Meenakshi Syamkumar

Learning Objectives

» deploy JupyterlLab with PyTorch inside a Docker container

+ compare different numeric types in terms of space
requirements, range, and precision

» perform calculations on Py Torch tensors

 formulate models as functions that multiply input data by
Darameters

Py Torch Uses

‘ Floating point operations

* scientific computing, machine learning

1200 +

* matrices, linear algebra

1000 4
e seamless: on

800 A

distributed computing

600 A

a Opt|m|zat|on oo

¢y =1(x) o
. vvhich x makes y smallest! (or largest!) w0l

a Machine learning:

* what yield best performance metrics for some data!
* simple example:
y=b*x+ what b and ¢ parameters give the best fit!

* deep leaming
y = sigmoid(sigmoid(data @ +) @ +

Python Numeric Types (Built In)

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Python Types

* Ints
no maximum/minimum size (Python is unusual in this way)
bigger/smaller values => more bits necessary

¢ floats
usually 64 bits ("double precision”; 32 bits would "single precision”)
like exponential notation (1.23 x 10?), but in binary instead of decimal
min/max size. Inf, -Inf, NaN have special bit combinations

exponent fraction

sign (11 bit) (52 bit)
[I |
o) o) o)
63 52 0

https://en.wikipedia.org/wiki/Double-precision floating-point format

¢ complex
real and imaginary represented as two floats
not covered in 544

https://docs.python.org/3/library/stdtypes.html

Other Numeric Types

Common numeric types that (a) CPUs can directly manipulate and (b) Py Torch supports
* Integers: uint8, INt8, Intl 6, Int32, int64
* floats: floatl 6, float32, float64
* names specify bits, float vs. int, and signed ("u" => unsigned)

* dtype (data type)

import torch

j = torch.tensor(B.\l4, dtype=)
PyTorch floatl 6 Python float
print (x.element size()) # 2 bytes (instead of 8)

Tradeoffs: precision, range, memory usage

Hardware Support s | ~ v x

MULPD Multiply Packed Double Precision Floating-Point Values
MULPS Multiply Packed Single Precision Floating-Point Values
MULSD Multiply Scalar Double Precision Floating-Point Value
MULSS Multiply Scalar Single Precision Floating-Point Values

https://www.felixcloutier.com/x86/

Hypothetical Scenario: all the ints in your dataset fit nicely in 3 bytes. Should you
come up with a new integer byte representation!?

Pro: utilize memory more efficiently based on your use case
Con: your CPU won't have instructions for working with this new type. Solutions:

* perform the multiplication in software instead of hardware (slow!)

* keep the data in your 3-byte format but convert to a regular 4-byte it on an as-
needed basis to do calculations (slow!)

Common to have one form for computation, another for storage, messages, etc.

https://www.felixcloutier.com/x86/mulpd
https://www.felixcloutier.com/x86/mulps
https://www.felixcloutier.com/x86/mulsd
https://www.felixcloutier.com/x86/mulss

Demos...

