| 544] Processes and [hreads

Meenakshi Syamkumar

Learning Objectives

« describe the interactions between schedulers, CPUs, threads,
and address spaces

 decide for a given scenario whether to organize code as
single-threaded, multi-threaded, or multi-process

» trace through different interleavings to identify race
conditions

Motivation

Modern CPUs have many cores (maybe dozens)
more cores rather than faster cores

a simple Python program can use at most ONE core
(less If it accesses files or the Internet)

Understanding threads and processes will:
* let us write programs that fully utilize CPU resources

* decide the structure of our concurrent program (threads or processes)
depending on the situation

Outline

Virtual Address Spaces

Threads

Demos and Worksheet

Processes and Address Spaces

Address spaces
¢ A IS a running
* Each process has it's own

* The same virtual address generally refers to different memory In different processes
* Regular processes cannot directly access or other addr spaces

virtual address
spaces

physical memory

physical addresses

Processes and Address Spaces

Address spaces
¢ A IS a running
* Each process has it's own
* The same virtual address generally refers to different memory In different processes
* Regular processes cannot directly access or other addr spaces
* Address spaces can have holes (N is usually MUCH bigger than M)
* Physical memory for a process need not be contiguous

virtual address
spaces

physical memory

physical addresses

What goes in an address space!

def g(y): Frames
— return y * 2 Global frame
def £ 0
return g(x+1) f
matrix

matrix = [[1,2], [3,4]]

Objects

function

g(y)

function

f(x)

list

f(10) f O.*i//7()
x 10 Q\ !
list
g \s
y 11 3
&
https://pythontutor.com/
virtual address what goes here?
spaces

https://pythontutor.com/

What goes in an address space!

virtual address
spaces

def g(y): Frames Objects
return y ¥ 2 Global frame function
g(y)
def f(x): ? |
return g(x+1) f :c“?;t)")”
matrix
matrix = [[1,2], [3,4]] list list
f(10) f 4/’ N
‘ x [10 .\ 1]
\Iist
2 0 1
y 11 3|4
!
code
tack h
(Python) > =P

Note: code and heap generally not contiguous

What goes in an address space!

def g(y): Frames Objects
- return y * 2 Global frame function
g(y)
def f(x): J
f function
return g(x+1) | £ (x)
matrix
matrix = [[1,2], [3,4]] list list
f(10) f #/, N
x 10 .\ 1172
\Iist
g 0 1
y 11 3| 4
&
some packages
(like numpy)
code code
| tack h
virtual address (Python) ® stac €ap
spaces

How does code execute!

def g(y): Frames
<::> return y * 2

Global frame

def f(x): g
return g(x+1) f
matrix

matrix = [[1,2], [3,4]]

Objects

function

g(y)

function

f(x)

list list

f(10) f Ot+i//’_o 1
x 10 \‘ 1]
\\\ant
& 0o |1
y 11 3| 4
&
instruction pointer
, code code
virtual address (Python) (©) stack heap
spaces

How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)

code code

virtual address (Python) (Q)
spaces

stack heap

How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)

code code

virtual address (Python) (Q)
spaces

stack heap

How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)

, code code
virtual address (Python) (©) stack heap

spaces

call numpy function

Outline

Virtual Address Spaces

Threads

Demos and Worksheet

Threads

have their own

and

code

(©)

process:
virtual address code
spaces (Python)
process:

virtual address code
spaces (Python)

code

(©)

- but share the

heap

heap

Context Switch

Schedulers
« CPU IS an Important sub system in an
e schedulers decide when to between threads

* context swich: change which thread a CPU is running

Processes

Context Switch

Schedulers
« CPU IS an Important sub system in an
e schedulers decide when to between threads

* context swich: change which thread a CPU is running

context switch!
thread in diff process

context switch!
same process, diff thread

SRS TR S | y

Processes

Scheduling Restrictions: Blocked Threads

Threads can be in one of three states
: CPU is executing it
: walting on something other than CPU (network, input, disk; etc)
: scheduler can choose to context switch to it

CPU cannot advance instruction
pointer until network request finishes

=P r = requests.get (URL)
total = sum(r.json())
print (total)

running ready running

[i i &) & blocked t

Processes

Efficient Use of Compute Resources

Wasted cores: (|) not enough threads (2) blocked threads

For 100% CPU utilization (difficult goal)

need at least one ready/running thread for each CPU core
generally need more threads than cores (threads are often blocked)

threads could be in one process (or many)
applications
good when multiple threads need to access frequently modified data structures

new kinds of bugs possible (race conditions, deadlock)

applications (https://docs.python.org/3/library/multiprocessing.htmil)

easler to program (or just manually launch several processes in background)
better at keeping multiple cores busy simultaneously (Python specific)

Both approaches work well for dealing with blocked threads

https://docs.python.org/3/library/multiprocessing.html

Coding Demos, Worksheet

Thread operations

* 1= threading. ()
¢ 1 (target=?2%, args=[1{!!])
* tjon(

* L 0

