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Learning Objectives

« describe the interactions between schedulers, CPUs, threads,
and address spaces

 decide for a given scenario whether to organize code as
single-threaded, multi-threaded, or multi-process

» trace through different interleavings to identify race
conditions



Motivation

Modern CPUs have many cores (maybe dozens)
more cores rather than faster cores

a simple Python program can use at most ONE core
(less If it accesses files or the Internet)

Understanding threads and processes will:
* let us write programs that fully utilize CPU resources

* decide the structure of our concurrent program (threads or processes)
depending on the situation
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Processes and Address Spaces

Address spaces
¢ A IS a running
* Each process has it's own

* The same virtual address generally refers to different memory In different processes
* Regular processes cannot directly access or other addr spaces

virtual address
spaces

physical memory

physical addresses



Processes and Address Spaces

Address spaces
¢ A IS a running
* Each process has it's own
* The same virtual address generally refers to different memory In different processes
* Regular processes cannot directly access or other addr spaces
* Address spaces can have holes (N is usually MUCH bigger than M)
* Physical memory for a process need not be contiguous
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What goes in an address space!
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What goes in an address space!

virtual address
spaces
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Note: code and heap generally not contiguous




What goes in an address space!
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How does code execute!

def g(y): Frames
<::> return y * 2

Global frame

def f(x): g
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How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)
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How does code execute!

CPUs
* (CPUs are attached to at most one instruction pointer at any given time
* they run code by executing instructions and advancing the instruction pointer

* Note: interpreter left out for simplicity (CPU points to interpreter code, which
points to Python bytecode)

, code code
virtual address (Python) (©) stack heap
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call numpy function
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have their own

and

code

(©)

process:
virtual address code
spaces (Python)
process:

virtual address code
spaces (Python)

code

(©)

- but share the

heap

heap




Context Switch

Schedulers
« CPU IS an Important sub system in an
e schedulers decide when to between threads

* context swich: change which thread a CPU is running

Processes




Context Switch

Schedulers
« CPU IS an Important sub system in an
e schedulers decide when to between threads

* context swich: change which thread a CPU is running

context switch!
thread in diff process
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Scheduling Restrictions: Blocked Threads

Threads can be in one of three states
: CPU is executing it
: walting on something other than CPU (network, input, disk; etc)
: scheduler can choose to context switch to it

CPU cannot advance instruction
pointer until network request finishes

=P r = requests.get (URL)
total = sum(r.json())
print (total)

running ready running
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Efficient Use of Compute Resources

Wasted cores: (|) not enough threads (2) blocked threads

For 100% CPU utilization (difficult goal)

need at least one ready/running thread for each CPU core
generally need more threads than cores (threads are often blocked)

threads could be in one process (or many)
applications
good when multiple threads need to access frequently modified data structures

new kinds of bugs possible (race conditions, deadlock)

applications (https://docs.python.org/3/library/multiprocessing.htmil)

easler to program (or just manually launch several processes in background)
better at keeping multiple cores busy simultaneously (Python specific)

Both approaches work well for dealing with blocked threads


https://docs.python.org/3/library/multiprocessing.html

Coding Demos, Worksheet

Thread operations

* 1= threading. ()
¢ 1 (target=?2%, args=[1{!!])
* tjon(
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