[544] Locks

Meenakshi Syamkumar

Learning Objectives

» identify critical sections in code
» protect critical sections with locks

 write code that avoids concurrency bugs, such as race
conditions and deadlocks

 use Python packages written In non-Python languages to get
around the GIL (global interpreter lock)

Outline

Critical Sections and Locks
Worksheet and Demos

Advanced Topics
* Global Interpreter Lock
* Instruction Reordering and Caching

Critical Sections

1 # in dollars

2 bank accounts = {"x": 25, "y": 100, "z": 200}
3

4 def transfer euros(src, dst, euros):

5 dollars = euros to dollars (euros)

6 success = False

7

8 1f bank accounts[src] >= dollars:

) bank accounts[src] -= dollars
10 bank accounts[dst] += dollars
11 success = True
12
13 print ("transferred" 1f success else "denied")

If two threads are calling transfer_euros concurrently, during which lines would a context
switch between those two be problematic?

A section of code we don't want interrupted by certain other code is a

Critical Sections

1 # in dollars

2 bank accounts = {"x": 25, "y": 100, "z": 200}

3

4 def transfer euros(src, dst, euros):

5 dollars = euros to dollars (euros)

6 success = False

7

8 1f bank accounts|[src] >= dollars: N |
9 bani_accounts[src] —-= dollars critical section
10 bank accounts[dst] += dollars
11 success = True
12
13 print ("transferred" 1f success else "denied")
Goals:

want withdrawal+deposit seen together (never seen half done).
rules (called) like "no account goes negative” must be enforced

Locks

O JdJo Ol WM K

Lock Rules

in dollars
bank accounts = {"x": 25, "y": 100, "z": 200}
lock

= threading.Lock () # protects bank accounts

def transfer euros(src, dst, euros):

lock.acquire ()

dollars = euros to dollars(euros)

success = False

1f bank accounts[src] >= dollars:
bank accounts|[src] -= dollars
bank accounts[dst] += dollars
success = True

print ("transferred" 1f success else "denied")
lock.release ()

* between and ,alockis by the thread that acquired it

* alock may only be held by one thread at a time

* If T2 wants to acquire a lock held by T, T2 blocks until T releases it

Locks

1 # in dollars

2 bank accounts = {"x": 25, "y": 100, "z": 200}

3 lock = threading.Lock () # protects bank accounts
4

5 def transfer euros(src, dst, euros):

6 dollars = euros to dollars (euros)

7 success = False

8 lock.acquire ()

9 1f bank accounts[src] >= dollars:
10 bank accounts[src] -= dollars
11 bank accounts[dst] += dollars
12 success = True
13 lock.release ()
14 print ("transferred" 1f success else "denied")

Tradeoffs

* different patterns may accomplish the same goal
* some are more efficient; some are simpler

Locks

1 # in dollars

2 bank accounts = {"x": 25, "y": 100, "z": 200}

3 lock = threading.Lock () # protects bank accounts
4

5 def transfer euros(src, dst, euros):

6 dollars = euros to dollars (euros)

7 success = False

8 1f bank accounts[src] >= dollars:

9 lock.acquire ()
10 bank accounts[src] -= dollars
11 bank accounts[dst] += dollars
12 lock.release ()
13 success = True
14 print ("transferred" 1f success else "denied")

Tradeoffs

different patterns may accomplish the same goal
some are more efficient; some are simpler

be carefull (this incorrect version provides atomicity but not consistency)

Worksheet and Demos...

Outline

Critical Sections and Locks
Worksheet and Demos

Advanced Topics
* Global Interpreter Lock
* Instruction Reordering and Caching

Python's GIL (Global Interpreter Lock)

\N,&‘\&\V\%
code code
(Python) (®

Global Interpreter Lock

Only one thread can be running Python code in a process at once
Python threads are bad for using multiple cores

They're still useful for threads blocked on I/O

Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (®

Global Interpreter Lock
* Only one thread can be running Python code in a process at once
* Python threads are bad for using multiple cores
* They're still useful for threads blocked on /O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (®

Global Interpreter Lock
* Only one thread can be running Python code in a process at once
* Python threads are bad for using multiple cores
* They're still useful for threads blocked on /O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

code code
(Python) (®

Global Interpreter Lock
* Only one thread can be running Python code in a process at once
* Python threads are bad for using multiple cores
* They're still useful for threads blocked on /O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

Global Interpreter Lock
* Only one thread can be running Python code in a process at once
* Python threads are bad for using multiple cores
* They're still useful for threads blocked on /O
* Some Python libraries using other languages allow parallelism

Python's GIL (Global Interpreter Lock)

Global Interpreter Lock
* Only one thread can be running Python code in a process at once
* Python threads are bad for using multiple cores
* They're still useful for threads blocked on /O
* Some Python libraries using other languages allow parallelism

Why the GIL?

thread |

X = some list

x = None

thread 2

y = that same list
y = None

thread | stack heap

X

references=2

thread 2 stack list object

>/ 7

Why the GIL?

thread |

X = some list

x = None

thread 2

y = that same list
y = None

thread | stack heap

X

references=1

thread 2 stack list object

object will be freed when references is 0

Why the GIL?

situation
fihsri;de llist * cpython (main Python interpreter) uses reference
= None counting internally to know when It can free objects
* Iimplication: multiple threads modifying same integer
thread 2 solutions
Z - Kl'gtn‘:’me fst * run one thread at a time (Python's approach)

* lots of locking (slower for single-threaded code)

thread | stack heap

X

references=1

thread 2 stack list object

Outline

Critical Sections and Locks
Worksheet and Demos

Advanced Topics
* Global Interpreter Lock
* Instruction Reordering and Caching

Challenges Beyond Interleaving

import threading

v = 0

ready = False

def task(x):
global vy
y = X ** 2
ready = True

t = threading.Thread (target=task, args=[5])
t.start ()
while not ready:
pass
print (y) # want 25 (not O0)

Challenges Beyond Interleaving

import threading

v = 0

ready = False

def task(x):
global vy
v o= X ** 2 ready = True
ready = True y = X ** 2

t = threading.Thread (target=task, args=[5])
t.start ()
while not ready:
pass
print (y) # want 25 (not O0)

Challenges Beyond Interleaving

import threading

v = 0 core | (running task) core 2 (running main)
ready = False
LI cache: LI cache:
def task (x) : y =25 y = 0 (stale)
) ready = True ready = False (stale)

global vy

y = X ** 2

ready = True

t = threading.Thread (target=task, args=[5])
t.start ()
» while not ready:
main pass
print (y) # want 25 (not 0)

Challenges Beyond Interleaving

import threading

v = 0 core | (running task) core 2 (running main)
ready = False
LI cache: LI cache:
def task (x) : y =25 y = 0 (stale)
' ready = True ready = True

global vy

y = X ** 2

ready = True

t = threading.Thread (target=task, args=[5])
t.start ()
while not ready:
pass
print (y) # want 25 (not 0)

main

Concluding Advice

Use provided primitives (like locks+joins) to control isolation+ordering
* these calls control AND (topic beyond 544)

* It's easy to get lockless approaches wrong

Correctness tips (keep it simple to avoid bugs!):
* can you use multiple processes instead of threads!
* s one big lock good enough for protecting all your data’
* is it OK to hold the lock through a whole function call?

Performance tips:
* avoid holding a lock while blocking on /O (network, disk, user input, etc)
* If you have multiple updates, can you hold the lock for more than one of them?

* use performant packages like numpy
the code in C/C++/Fortran/Rust can often run without the GIL

these will often create threads for you

