O44] File Systems

Meenakshi Syamkumar

Learning Objectives

« compare the performance characteristics of different kinds of
block devices (HDDs and S5Ds)

» describe different kinds of file systems

» Interpret the output of tools like "mount” and "df" to
understand the structure of a mount namespace

Outline

Block Devices (overview, HDD, SSD)
File Systems

Demos

Block Devices

Memory is

".
o I 2 3 4 5

Block storage devices are accessed in units of (512 bytes, few KBs, etc)

512 bytes 512 bytes 512 bytes

0 | 2

Optimizing Disk 1/O with Memory: Caching and
Buffering

512 bytes 512 bytes 512 bytes

0 | 2

ACWo0011604 17.1167 -61.7833 10.1 ST JOHNS COOLIDGE FLD
ACW00011647 17.1333 -61.7833 19.2 ST JOHNS
AE000041196 25.3330 55.5170 34.0 SHARJAH INTER. AIRP
AEM00041194 25.2550 55.3640 10.4 DUBAI INTL
AEM00041217 24.4330 54.6510 26.8 ABU DHABI INTL
AEM00041218 24.2620 55.6090 264.9 AL AIN INTL
60590
AG0O00060611 28.0500 9.6331 561.0 IN-AMENAS GSN 60611
AG0O00060680 22.8000 5.4331 1362.0 TAMANRASSET GSN 60680
AGE00135039 35.7297 0.6500 50.0 ORAN-HOPITAL MILITAIRE
AGE00147704 36.9700 7.7900 161.0 ANNABA-CAP DE GARDE
AGE00147705 36.7800 3.0700 59.0 ALGIERS-VILLE/UNIVERSITE
AGE00147706 36.8000 3.0300 344.0 ALGIERS-BOUZAREAH

ghcnd-stations.txt

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device
e the Linux stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)

* Python (and other) programs might chunks of data to avoid
asking Linux too many times for small pieces of data

Optimizing Disk 1/O with Memory: Caching and
Buffering

htop
[0.7%) . 79 thr; 1
[9.0%) . 9.00 0.0¢
CEEEETTET 260M/1.93G] 19 : 4
[0K/0K]
page cache, could evict if needed only counts non-cache memory

We might want to process one line a time, but it would be
wasteful to repeatedly read the same block from the device

e the Linux stores pages from files in RAM
(usually 4KB pages, often larger than device blocks)
* Python (and other) programs might chunks of data to avoid

asking Linux too many times for small pieces of data

Small Reads (<4KB): Performance

goal: collect all station IDs

ACW00011604]17.1167 -61.7833 10.1
ACW00011647 |17.1333 -61.7833 19.2
AEQ00041196 |25.3330 55.5170 34.0
AEM00041194 |25.2550 55.3640 10.4
AEM00041217 |24.4330 54.6510 26.8
AEM00041218 |24.2620 55.6090 264.9

AG000060611 [28.0500 9.6331 561.0
AGO00060680 [22.8000 5.4331 1362.0
AGE0135039 [35.7297 ©0.6500 50.0
AGEQ0147704 [36.9700 7.7900 161.0
AGE0147705 [36.7800 3.0700 59.0
AGEQ0147706 [36.8000 3.0300 344.0

start = time.time ()

with open ("ghcnd-stations.txt") as f:

for line in f:
stations.append(line[:11])
print (time.time () - start)

simple version that reads everything: 66 ms

format issue: no good way to
ready one column without everything else

(similar to issues with bad cache line usage)

ST JOHNS COOLIDGE FLD

ST JOHNS
SHARJAH INTER. AIRP GSN 41196
DUBAI INTL 41194
ABU DHABI INTL 41217
AL AIN INTL 41
ghcnd-stations.txt
60590
IN-AMENAS GSN 60611
TAMANRASSET GSN 60680

ORAN-HOPITAL MILITAIRE
ANNABA-CAP DE GARDE
ALGIERS-VILLE/UNIVERSITE
ALGIERS-BOUZAREAH

stations = []
line len = 86
start = time.time ()

with open ("ghcnd-stations.txt",
"rb", buffering=0) as f:
offset = 0
while True:
f.seek (offset)
station = str(f.read(1l1l),
offset += line len

"utf-g8")

if station:

stations.append (station)
else:

break

print (time.time () - start)

"optimized" version that only reads stations: 171 ms

Hard Disk Drives (HDDs)

Steps to read/write

|. move head to correct track these steps dominate unless
2. wait for spinning disk to rotate until data is under head | transferring lots of data (few MBs)
3. transfer the data

Layout
* assign block numbers to platter locations so sequential (like 5,6,7,8, ...) reads/writes will be fast

* programmers should assume random accesses (like 2, 9, 5, 1, ...) will be slow

Capacity vs. I/O and Short Stroking

Storage resources
|. capacity
2. /O (input/output often more limited when using HDD:s)

Short Stroking
* head moves over platter faster near outside track
* smaller block addrs correspond to outside tracks
* strategy: only use outside tracks
* pros: faster /O

° cons: less space

Solid State Drives (SSDs) - Flash

Reading and writing
* no moving parts

* inherently parallel

SSD internals:
* "block" and "page" have different meanings in this context

* "page" => unit that we can read or write (couple KBs)

* pages cannot be individually re-written
* "block” => unit that is erased together (maybe [00s of KBs)

block

Solid State Drives (SSDs) - Flash

want to write X. Options:

erase whole block and re-write A, B, and D too

write X somewhere else

Solid State Drives (SSDs) - Flash

want to write X. Options:
* erase whole block and re-write A, B, and D too
e write X somewhere else

disadvantages
* need extra bookkeeping (in SSD) to know where data is

* need to eventually move things around to reclaim the
space wasted by B

e strategy: scquentially write whole blocks (when possible)

HDDs vs. SSDs

Metrics
. how many bytes can we store!
. how long does 1t take to start transferring data
(I/O operations, of some max size, per second): how many small/random
transfers can we do per second
: how many bytes can we transfer per second

Metric: Relative to HDDS,

capacity worse

latency much better (no moving parts)

random |OPS even better — low latency AND in parallel
throughput (sequential) little better

throughput (random writes) better (but block erase is a concern)

throughput (random reads) much better

Partitions and RAID

Block devices can be divided into partitions:
0 M 0 N O P

root@ins -1: | /dev/sdx
/dev/sda || /dev/sdal /dev/sdal4d /dev/sdal5
/dev/sdb || /dev/sdb1l

2 devices 4 partitions

RAID controllers (Redudant Array of Inexpensive Disks) can make multiple devices appear as one:

0 M

/ | ~

0 N O N O N

Many configs use redundancy (e.g., same data on > disk) to avoid data loss when one device dies.

Outline

Block Devices (overview, HDD, SSD)
File Systems

Demos

File Systems

Difficult: writing code to store data In
Easier: writing code to store data in

Files systems abstract storage for us. We write to data blocks without thinking about it
by writing data to files in a

read/write a file

local file system

read/write some blocks

Types of File System (FS)

local FS layered FS (for Docker) in-memory FS (Temp Files)

read/write a file
read/write some blocks

pseudo FS (Stats) network FS distributed FS

P T

server

cluster of worker machines

Types of File System (FS)

local FS

layered FS (for Docker) in-memory FS (Temp Files)

L

pseudo FS (Stats) network FS distributed FS

read/write a file

read/write some blocks

P T

server

cluster of worker machines

Local File Systems

2KB
blocks:

How does a local FS use blocks!?

Local File Systems

e inodey/

blks: 2,47
blocks: size: 3KB

How does a local FS use blocks? Many possibilites. One example..

Files
* some metadata, like size, block locations
* each is represented by an "Inode" structure (above file is fragmented)

 file extensions (like .txt) don't mean anything to the file system (just for documentation)

Local File Systems

inode Q/:Zmoje/

2KB blks: 2.47| blks: 3
blocks: size: 3KB

file.txt: inode b

How does a local FS use blocks? Many possibilites. One example..

Files
* some metadata, like size, block locations
* each is represented by an "Inode" structure (above file is fragmented)

 file extensions (like .txt) don't mean anything to the file system (just for documentation)

Directories
* special files containing name => inode mappings
* the same inode could be in multiple directories
* each file system has a "root’ directory from which you can reach everything else recursively

» formatting creates initial structures (like the root directory)

File System Trees

Nesting of directories and files logically create "trees"
» technically DAGs (directed acyclic graphs) because the same inode number can have
multiple names in different directories

* leaves: files and empty directories

/

relative path to E.txt: C/E. txt
absolute path to E.txt: /B/C/E. txt
relative path to D.csv: . . /A/D.csv
absolute path to D.csv: TopHat

Multiple File Systems: Windows Approach

have multiple trees (each is a "drive")

;}@ oo o .

local FS | local FS 2

o pwent (a2

local FS 3

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

https:.//www.brit.co/fruit-salad-tree/

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sdal sda? (root FS) sdb|
local FS | local FS 2
local FS 3

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sdal & o sda? (root FS) sdb|
Pé ~
~
~
~
~
J ® O

mount /dev/sdal /A

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS) sdb|

mount /dev/sdal /A

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS) " sdb|

4
4
4
4
4
4
4
4
L 4
4

mount /dev/sdal /A
mount /dev/sdbl /A/B

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS)

77\
\

mount /dev/sdal /A
mount /dev/sdbl /A/B

Multiple File Systems: Unix Approach

mount file systems over directories of other file systems to make one big tree

sda? (root FS)

Note: each container has
it's own root file system and
mount namespace

7\

\

mount /dev/sdal /A
mount /dev/sdbl /A/B

Container File Systems (Simplified)

mount namespace (VM)

e

ubuntu debian
, stuff stuff

ubun‘tu debiaﬂ
stuff stuff

mount namespace (container) mount namespace (container 2)

Outline

Block Devices (overview, HDD, SSD)
File Systems

Demos

