544] MapReduce and Spark

Meenakshi Syamkumar

Learning Objectives

» describe the role mappers and reducers have in MapReduce
jobs

» describe Spark concepts related to data lineage (RDDs,
operations, transformations, actions)

» deploy Spark with multiple workers

 write Spark code using RDD and Datarrame APls

Outline: MapReduce and Spark

Data Lakes
Hadoop MapReduce

Spark

Review: Data VWarehouse

g % Warehouse Truck
bt Customer)

3 worker driver
é’ Ecommerce site Stock-keeping app Vehicle route planner
]

i
5,‘ A 4 v h 4
& Sales Inventory Geo
~ DB DB DB
@)

extract extract extract
é’ transform transform transform !
-'q_,) 1
g\ load load / load

o
< ,

-l Business query
O Data warehouse

analyst

Figure 3-8. Simplified outline of ETL into a data warehouse.

(Chapter 3 of Data-Intensive Applications, by Kleppmann)

OREILLY

Designing
Data-Intensive

Martin Kleppmann

Data warehouse: storage + compute are tightly coupled (e.g., indexes)
coupling makes more optimization possible

what if you want to do ML instead of running SQL queries?

"Data Lake" (new term for decoupled storage/compute for analytics)

Users

OLTP systems

OLAP systems

% Customer

Ecommerce site

. Sales
DB

Warehouse
worker

l l

Truck
driver

Stock-keeping app

Vehicle route planner

Inventory

DB

__

extract

extract

transform

transform transform
“ load / load
A

extract

)

table.parquet

dog.jpeg cat.mp4

files
data.csv filing.pdf
MapReduce Spark PyTorch

unstructured data

scalable, distributed storage
(for example, HDFS)

processing/compute engines

Outline: MapReduce and Spark

Hadoop MapReduce

Spark

MapReduce

HDFS

How do we answer questions?

SQL:
a query, "SELECT * FROM ..." — BEEEG LI — results

MapReduce

map function code ~

—
1

reduce function code ™ — BRUGEELEEEE — output files

mapper/reducer counts —

a file (or many)

How do we answer questions?

SQL:

a query, "SELECT * FROM ..." — G Il — results

MapReduce

map function code ~

reduce function code — EEUGEACEEE -—>
mapper/reducer count

a file (or many)

input/output files are generally in HDFS

How do we answer questions?

SQL:
a query, "SELECT * FROM ..." —

MapReduce

map function code -

—
1

reduce function code @ _—

mapper/reducer counts —

a file (or many)

Database

MapReduce

—— results

— output files

Mappers by example: what are the colors of the
squares?

input.csv (in HDFS):

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

deft map (key, wvalue) :

In SQL:
SELECT color FROM table WHERE shape = "square”;

Mappers by example: what are the colors of the
squares?

input.csv (in HDFS):

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red,circle, 3

deft map (key, wvalue) :

Zero or more output
key/value pairs

Mappers by example: what are the colors of the
squares?

input.csv (in HDFS):

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red, square, 5

deft map (key, wvalue) :

Zero or more output
key/value pairs

Mappers by example: what are the colors of the
squares?

input.csv (in HDFS):

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red, square, 5

deft map (key, wvalue) :
1f value.shape = square:
emit (key, value.color)

key value
1 red
3 green

Mappers by example: what are the colors of the
squares?

what if the data is huge!?
input.csv (in HDFS):

color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

red, square, 5

deft map (key, wvalue) :
1f value.shape = square:
emit (key, value.color)

key value
1 red
3 green

Mappers Run on Multiple Machines at Once

cluster of machines
input.csv (in HDFS):

color, shape, Size

Ered, circle, 3 —
LG s SAVALE Do

blue, oval, 1;
.green,..square,.....3..

Reducers

cluster of machines
input.csv (in HDFS):

color, shape, Size
,red,square,5
blue, oval, 1
Lgreen,. .square . ..3.
intermediate .
one key/value pair
data

a simple (default) reduce \
task can combine output m

of multiple mappers to value pair
a single file

key value
1 red
3 green

Reducers

reducers can output exactly their input,
OR have further computation

def reduce (key, values):
for row 1n values:
emit (key, row)

Reducers

color, shape, size

rej, circle, g def map (key, wvalue):

red, square, — — -

o e X emit (value.color, value)
green, square, 3

key value def reduce (key, values):
blue blue, oval, 1 count = 0
green green, square, 3 - for row 1n values:
red red, circle, 3 count = count + 1
red, red, square, o) emit (key, count)
intermediate data is reduce will be called 3 times (once for each
grouped and sorted by key group). The calls could happen in one reduce

task (or be split over many)

Reducers

color, shape, size
rej, circle, ; def map (key, wvalue):
, square, — — -
re qu emit (value.color, value)
blue, oval, 1
green, square, 3

kevy value def reduce(key, values):
blue blue, oval, 1 count = (

green Jreen, square, 3 — for row 1n values:
red red, circle, 3 count = count + 1
red, red, square, 5 emit (key, count)

intermediate data is \

grouped and sorted by key key value

blue 1

Reducers

color, shape, size
rej, circle, ; def map (key, wvalue):
, square, — — -
re qu emit (value.color, value)
blue, oval, 1
green, square, 3

kevy value def reduce(key, values):
'blue blue, oval, 1 count = 0
Lgreen green, square, 3 - for row 1n values:
red red, circle, 3 count = count + 1
red, red, square, 5 emit (key, count)
intermediate data is \
grouped and sorted by key key value
blue 1

green 1

Reducers

color, shape, size
rej, circle, ; def map (key, wvalue):
, square, — — -
re qu emit (value.color, value)
blue, oval, 1
green, square, 3

kevy value def reduce (key, values):
blue blue, oval, 1 count = 0
green green, square, 3 - for row 1n values:
[}ed red, circle, 3 count = count + 1
red, red, square, 5 emit (key, count)
intermediate data is \
grouped and sorted by key key value
blue 1
green 1

red 2

What is the SQL equivalent of this MapReduce program!?

color, shape, size

rej, circle, ; def map (key, wvalue):

red, square, — — -

o e X emit (value.color, value)
green, square, 3

kevy value def reduce(key, values):
blue blue, oval, 1 count = 0
green green, square, 3 - for row 1n values:
Fed red, circle, 3 count = count + 1
red, red, square, 5 emit (key, count)
intermediate data is \
grouped and sorted by key key value
blue 1
green 1

red 2

Multiple Reducers (for big intermediate data)

input.csv (in HDFS):

cluster of machines

,

color, shape, Slze
'red, circle, 3
.red"squa‘re”S
blue, oval, 1

reducer

/
rere

each reduce task produces one output file.
a reduce task might take multiple keys.

all intermediate rows with the same key go to the same reducer.

2 reduce(...)
calls

Afﬂe
phase

\

] reducer

| reduce(...)
call

ouéput output
file | file 2

SQL => MapReduce
Map Phase

o SELECT, WHERE, GROUP BY, JOIN

Shuffle Phase (bringing related data to same place)
« ORDERBY, GROUP BY, JOIN

Reduce Phase
« SELECT, AGGREGATE, HAVING, JOIN
MapReduce 1s more flexible. (for example, how to do a

GROUP BY where one row goes to mutliple groups in SQL?)

Projects like HiveQL try to make MapReduce more accessible.

Data Locality: Avoid Network Transfers

Run on same machines
e HDFS DataNodes cluster of machines

* MapReduce executor

Try to run mappers on machine
DataNod
where DataNode has needed

data. Uses disk but not network.

reducer

Pipelines: Sequence of MapReduce Jobs

Efficiency: is storing intermediate data in HDFS a good idea!?

* replication on data we could re-compute seems wasteful (could set replication to [x)
* could we sometimes connect output from one stage more directly to the next!

* 1treating each stage independently prevents optimization tools from improving the whole pipeline

Outline: MapReduce and Spark

Data Lakes
Hadoop MapReduce

Spark

Resilient Distributed Datasets (RDDs)
SQL and DataFrames
Deployment

Intermediate Data: MapReduce vs. Spark

MapReduce

Resilient Distributed Datasets (RDD)

record series of operations on other data necessary to obtain results
computation only done when results needed (to write file, make plot, etc.)

you can't change an RDD, but you can define a new one in terms of another

Review: PyTorch DAGs

Computation graph implementing
the equation z =2x(a-b) + ¢

@ python
Machine
Learning
with PyTorch
and Scikit-Learn

Deowvelop machine learning and deep learning
models with Python

Packt

a, b, c: Input tensors (scalar)

r,, r,: Intermediate result tensors

z: Final result

Figure 13.1: How a computation graph works

Comparison

results are computed immediately (eagerly), but lineage is
tracked for the purpose of computing gradients

data lineage allows lazy computation of results, as needed

Data Lineage: Transformations and Actions

data = | def mult2 (row) :
("A", 1), return (row[0], row[l] * 2)
("B", 2),
("A", 3), def onlyA (row) :
("B", 4) return row|[0] == "A"

goal: get 2 times the second column wherever the first column is "A"

= sc.parallelize (data)

= .map (mult?2)
= .fi1lter (onlyA)
.collect ()

The computation is a sequence of 4 operations. Operations come in two types:
* transformation: create a new RDD (lazy, so no execution yet). Here: parallelize, map, and filter.
e action: perform all operations in the graph to get an actual result. Here: collect.

Data Lineage: Transformations and Actions

data = | def mult2 (row) :
("A", 1), return (row[0], row[l] * 2)
("B", 2),
("A", 3), def onlyA(row) :
("B", 4) return row|[0] == "A"

goal: get 2 times the second column wherever the first column is "A"

= sc.parallelize (data)

= .map (mult?2)
= .fi1lter (onlyA)
.collect ()

(parallelize) (map) (filter) (collect)

are there alternative paths you could create from the start to end node?

Optimization

Transformation vs. action

* transformation: intermediate results (means to an end)

 action: final results we care about

* this distinction creates opportunities for optimize, choosing a more efficient sequence of
transformations to reach the same endpoint

* tools need to know what transformations are doing (difficult with Python functions) to
automatically optimize

goal: get 2 times the second column wherever the first column is "A"

table = sc.parallelize (data)

double = table.map (mult2) [('A', 2),
doubleA = double.filter (onlyA) (TA! , 6)]
doubleA.collect ()
WRBEE . WAEEE -
(double) | (dowbleA) A
(filter) (collect)
" RDD .. RDD (— A

T L T T (collect)
(filter) (map)

Partitions

(doubleA)

A:-

(collect)

doubley T
(filter)

Cable) T
(parallelize) (map)

In what granularity should data flow through the transformations?

* whole dataset: it could all proceed through, one transformation at a time, but might
not fit in memory

= row: in this pipeline, nothing prevents each row from passing through independantly,
but probably slower than computing in bulk

© partition: Spark users can specify the number of partitions for an RDD

sc.parallelize (data, 1) sc.parallelize (data, 2)

data

= [

(
(
(
(!

"A"
1A B"
"A"

B",

~ ~

> w N
~

partition

data

= [

("A" 1) 14
("B" 2) 14
("A" 3) 14
("B", 4)

partition

partition

Tasks

Spark work

* spark code Is converted to jobs, which consist of stages, which consist of
* tasks:

- run on a single CPU core

- operate on a single partition, which is loaded entirely to memory

Choosing partition count directly affects number of tasks
necessary to do a job.

Advantages of larger partitions
* less overhead In starting tasks

Disadvantages of larger partitions
* might not have enough to use all cores that are avallable
* harder to balance work evenly

* USES more memaory

Repartitioning

(parallelize) (filter) (map) (collect)
("A", 1) ("A", 1) |—[("A", 2) partition
("B", 2) - ("A", 3) |[——|("A", 6) partition
(o , 3) /
("B" , 4)

Many operations (like filter and map) output the same number of

partitions as they receive

- If the data Is growing/shrinking a lot after a transformation, you might want
to change the partition count

- rdd.getNumPartitions() # check how many
- rdd2 = rdd.repartition(10) # change how many

Examples:
table.filter (onlyA) .map(mult?) .collect ()

table.filter (onlyA) .repartition(l) .map(mult2) .collect ()

Transformations: Narrow vs. Wide

"Any transformation where a single output partition can be computed from
a single input partition Is a " (Learning Spark book).

Others are

data = [("A", 1), (("B", 2), ("A", 3),("B", 4)]
table = sc.parallelize(data, 2)

filtered = table.filter (lambda row: row[0] == "A")
ordered = table.sortBy(lambda row: row[0])
("A", 1) ("A", 1) |—[("a", 1)
("B", 2) |T——|("A", 1) ("B", 2) ("A", 3)
("A", 3) |_—|("A", 3) o,) | PNE, 2)
("B", 4) filtered ("8%, 4) |— (B, 4)
(narrow) ordered

(wide)

Wide transformations often require network resources. Unless all input
partitions are on the same machine, some will need to be transferred.

Caching

Wisconsin ;g bytes rememberd

all weather weather qqer first time needed
data data

(filter)

Some RDDs might be used repeatedly
* Spark might cache a copy of the computed results
« ORwe can tell it to

all weather =
wl weather = all weather.filter(...)

wl weather.cache ()

wi weather.unpersist () # stop caching

Outline: MapReduce and Spark

Data Lakes
Hadoop MapReduce

Spark

Resilient Distributed Datasets (RDDs)

SQL and DataFrames
Deployment

Spark SQL and DataFrames

Spar|< SOQL
builds on RDDs

* write standard queries (ANSI SQL:2003)

* automatic optimization possible because Spark knows what transformations are
doing

DataFrame AP|

* builds on Spark SQL (so also optimizable)
e DataFrames are immutable because RDDs are immutable

* DataFrames aren't materialized in memory by default. Contents are computed
as needed In parallel across many workers.

DataFrames: Pandas vs. Spark

X
0 1
pandas df = pd.DataFrame ({"x": [1,2,3]})
1 2
2 3
X'y
0O 1 1
pandas DFs are mutable 1 2 4
pandas df["y"] = pandas df["x"] ** 2
2 3 9
spark df = spark.createDatalFrame (pandas df)

could convert back:
spark df2.toPandas ()

cannot add column to immutable Spark DF
can only create a new DF
spark df2 = spark df.withColumn ("y", col ("x") ** 2)

Outline: MapReduce and Spark

Data Lakes
Hadoop MapReduce

Spark

Resilient Distributed Datasets (RDDs)

SOQOL and DataFrames
Deployment

Deployment

Mode

Local

Standalone

YARN (client)

YARN (cluster)

Kubernetes

Spark driver

Runs on a single JVM, like a

laptop or single node

Can run on any node in the

cluster

Runs on a client, not part of

the cluster

Runs with the YARN
Application Master

Runs in a Kubernetes pod

Table |-1 from Learning Spark book

Spark executor

Runs on the
same JVM as the
driver

Each node 1n the
cluster will
launch 1ts own
executor JVM

YARN'’s
NodeManager’s
container

Same as YARN
client mode

Each worker
runs within its
own pod

Cluster manager

Runs on the same
host

Can be allocated
arbitrarily to any host
in the cluster

YARN’s Resource
Manager works with
YARN’s Application
Master to allocate the
containers on
NodeManagers for
executors

Same as YARN client
mode

Kubernetes Master

Deployment

Mode Spark driver Spark executor Cluster manager
Runs on a single JVM, like a Runs on the Runs on the same
Local . same JVM as the
laptop or single node driver host

Each node 1n the

. . Can be allocated
Can run on any node in the cluster will L
. arbitrarily to any host
cluster launch 1ts own

1in the clister

Standalone

cluster manager

Spark executor

Jupyter
pyspark module

Spark driver
Spark session

Spark executor Spark executor

s/containers

Deployment

Mode Spark driver Spark executor Cluster manager
Runs on a single JVM, like a Runs on the Runs on the same
Local . same JVM as the
laptop or single node driver host

Each node 1n the

Can run on any node in the cluster will Can be allocated

Standal . itrari
andalone cluster launch its own qrbltrarlly to any host

Jupyter
pyspark module

Spark driver this mode is fine for testing/development, but

Spark session misses the benefits of distributed computing
Sprak executor

VMs/containers

