
[544] Spark Internals
and Performance

Meenakshi Syamkumar

Learning Objectives

• select an appropriate caching level based on resources
available

• identify cases where hash partitioning is necessary (instead of
regular partitioning) to bring "related" data together

• describe three major Spark optimization related to groups/
aggregates: partial aggregates, partition coalescing, and
Parquet bucketing

• describe two major distributed join algorithms (BHJ and SMJ)
and the tradeoffs between them

Outline

Schema Inference

Collecting Data

Caching

Grouping

Joining

df = (spark.read.format("csv")
 .schema("????")
 .load("hdfs://nn:9000/sf.csv"))

• 0 tasks, 0.04 seconds
• need to manually specify types

df = (spark.read.format("csv")
 .option("header", True)
 .load("hdfs://nn:9000/sf.csv"))

• 1 task, 0.3 seconds
• only reads header
• everything is a string

df = (spark.read.format("csv")
 .option("header", True)
 .option("inferSchema", True)
 .load("hdfs://nn:9000/sf.csv"))

• 17 tasks, 33 seconds
• reads whole file to guess types

df = (spark.read.format("parquet")
 .load("hdfs://nn:9000/sf.parquet"))

• 1 tasks, 0.2 seconds
• only reads schema info

With Schema Inference

Without Schema Inference

Outline

Schema Inference

Collecting Data

Caching

Grouping

Joining

Collecting Data (OK)

HDFS Large Parquet File

Spark Workers
(2 computers)

CPU CPU

RAM

CPU CPU

RAM

RAM
Application

(1 computer)

df refers to parquet file
results = df.where(???).collect()
results = df.where(???).toPandas()

df partitions

HDFS Large Parquet File

CPU CPU

RAM

CPU CPU

RAM

RAM

df refers to parquet file
results = df.where(???).collect()
results = df.where(???).toPandas()

df partitions

task1 task2 task3 task4

Spark Workers
(2 computers)

Application
(1 computer)

Collecting Data (OK)

HDFS Large Parquet File

CPU CPU

RAM

CPU CPU

RAM

RAM

df refers to parquet file
results = df.where(???).collect()
results = df.where(???).toPandas()

df partitions

task5 task6 task7 task8

Spark Workers
(2 computers)

Application
(1 computer)

Collecting Data (OK)

Collecting Data (bad)

HDFS Large Parquet File

Spark Workers
(2 computers)

CPU CPU

RAM

CPU CPU

RAM

RAM
Application

(1 computer)

df refers to parquet file
results = df.where(???).collect()
results = df.where(???).toPandas()

df partitions

HDFS Large Parquet File

CPU CPU

RAM

CPU CPU

RAM

RAM

df partitions

task1 task2 task3 task4

Spark Workers
(2 computers)

Application
(1 computer)

df refers to parquet file
results = df.where(???).collect()
results = df.where(???).toPandas()

Collecting Data (bad)

out of memory! (only 2 of 8 partitions fit)

Outline

Schema Inference

Collecting Data

Caching

Grouping

Joining

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

df refers to parquet file
df2 = df.where(???)

df partitions

df2 partitions

Scenario: want to do lots of computations on df2
Goal: avoid repeatedly reading HDFS and filtering df

Local
FS

Local
FS

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.????)

df partitions

Local
FS

Local
FS

df2 partitions

Persist levels
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY
• others...

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.????) # df.cache() is a shortcut

df partitions

Local
FS

Local
FS

df2 partitions

Persist levels
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY
• others...

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.????)

df partitions

Local
FS

Local
FS

df2 partitions

Persist levels
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY
• others...

Documentation Snippet (https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning)

By default, Java objects are fast to access, but can easily consume a factor of 2-5x more space than the
“raw” data inside their fields. This is due to several reasons:

• Each distinct Java object has an “object header”, which is about 16 bytes and contains information
such as a pointer to its class. For an object with very little data in it (say one Int field), this can be
bigger than the data.

• Java Strings have about 40 bytes of overhead over the raw string data (since they store it in an
array of Chars and keep extra data such as the length), and store each character as two bytes due
to String’s internal usage of UTF-16 encoding. Thus a 10-character string can easily consume 60
bytes.

• Common collection classes, such as HashMap and LinkedList, use linked data structures, where
there is a “wrapper” object for each entry (e.g. Map.Entry). This object not only has a header, but
also pointers (typically 8 bytes each) to the next object in the list.

• Collections of primitive types often store them as “boxed” objects such as java.lang.Integer.

https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.????)

df partitions

Local
FS

Local
FS

df2 partitions

Persist levels
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY
• others...

Documentation Snippet (https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning)

By default, Java objects are fast to access, but can easily consume a factor of 2-5x more space than the
“raw” data inside their fields. This is due to several reasons:

• Each distinct Java object has an “object header”, which is about 16 bytes and contains information
such as a pointer to its class. For an object with very little data in it (say one Int field), this can be
bigger than the data.

• Java Strings have about 40 bytes of overhead over the raw string data (since they store it in an
array of Chars and keep extra data such as the length), and store each character as two bytes due
to String’s internal usage of UTF-16 encoding. Thus a 10-character string can easily consume 60
bytes.

• Common collection classes, such as HashMap and LinkedList, use linked data structures, where
there is a “wrapper” object for each entry (e.g. Map.Entry). This object not only has a header, but
also pointers (typically 8 bytes each) to the next object in the list.

• Collections of primitive types often store them as “boxed” objects such as java.lang.Integer.

More documentation (https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning)

When your objects are still too large to efficiently store despite this tuning, a much simpler
way to reduce memory usage is to store them in serialized form, using the serialized
StorageLevels in the RDD persistence API, such as MEMORY_ONLY_SER. Spark will then
store each RDD partition as one large byte array. The only downside of storing data in
serialized form is slower access times, due to having to deserialize each object on the fly.

https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning
https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.????)

df partitions

Local
FS

Local
FS

df2 partitions

Persist levels
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY
• others...

serialized serialized

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.????)

df partitions

Local
FS

Local
FS

df2 partitions

Persist levels (2x replication)
• MEMORY_ONLY_2
• MEMORY_ONLY_SER_2
• DISK_ONLY_2
• others...

Persisting/Caching

HDFS Large Parquet File

Spark Workers
(2 computers)

RAM RAM

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.????)

df partitions

Local
FS

Local
FS

df2 partitions

Persist levels (2x replication)
• MEMORY_ONLY_2
• MEMORY_ONLY_SER_2
• DISK_ONLY_2
• others...

Replication benefits
• two choices for where to run task without needing network transfer
• if a worker dies, no need to re-compute cached data

Replication downside
• uses twice as much space

Demos…

Outline

Schema Inference

Collecting Data

Caching

Grouping

Joining

GROUPS, AGGREGATES

GROUPS

X Y
A 1
A 3
A 7
A 8

B 2
B 9

X Y
A 1
A 3
B 2
C 4
D 5
D 6
A 7
A 8
B 9

C 4

X TOTAL

A 19
B 11
C 4
D 11

AGGREGATES
(1 row per group)

Logically
• lots of groups
• need to bring related

(grouped) data together
• stats per group

D 5
D 6

Spark: Physical Execution on Partitions

Logically
• lots of groups
• need to bring related

(grouped) data together
• stats per group

Physically (Spark)
• RDDs broken into partitions
• generally many groups per partition
• tasks processing partitions run on specific machines
• generally multiple partitions per machine

X Y
A 1
A 3
A 7
A 8

B 2
B 9

X Y

A 1
A 3

X TOTAL
A 19

C 4
D 5
D 6

B 2
C 4

D 5
D 6
A 7

A 8
B 9

B 11

m
ac

hi
ne

 1
m

ac
hi

ne
 2

C 4
D 11

partition

Spark: Physical Execution on Partitions

X Y
A 1
A 3
A 7
A 8

B 2
B 9

X Y

A 1
A 3

X TOTAL
A 19

C 4
D 5
D 6

B 2
C 4

D 5
D 6
A 7

A 8
B 9

B 11

m
ac

hi
ne

 1
m

ac
hi

ne
 2

C 4
D 11

partition

wide
transformation

narrow
transformation

requires exchange/shuffle
(needs network I/O)

X TOTAL
A 19
B 11
C 4
D 11

action

file or
Pandas DF

Spark: Physical Execution on Partitions

X Y
A 1
A 3
A 7
A 8

B 2
B 9

X Y

A 1
A 3

X TOTAL
A 19

C 4
D 5
D 6

B 2
C 4

D 5
D 6
A 7

A 8
B 9

B 11

m
ac

hi
ne

 1
m

ac
hi

ne
 2

C 4
D 11

partition

normal
partitioning

any row can be in
any partition

X TOTAL
A 19
B 11
C 4
D 11

action

file or
Pandas DF

"hash"
partitioning

rows with the same
"key" (selected by
user) will be in the

same partition

Spark: Physical Execution on Partitions

X Y
A 1
A 3
A 7
A 8

B 2
B 9

X Y

A 1
A 3

X TOTAL
A 19

C 4
D 5
D 6

B 2
C 4

D 5
D 6
A 7

A 8
B 9

B 11

m
ac

hi
ne

 1
m

ac
hi

ne
 2

C 4
D 11

partition

X TOTAL
A 19
B 11
C 4
D 11

action

file or
Pandas DF

can we send less data?

Spark: Physical Execution on Partitions

X Y

A 4
A 7
A 8

B 2
B 9

X Y

A 1
A 3

X TOTAL
A 19

C 4
D 11

B 2
C 4

D 5
D 6
A 7

A 8
B 9

B 11

m
ac

hi
ne

 1
m

ac
hi

ne
 2

C 4
D 11

partition

X TOTAL
A 19
B 11
C 4
D 11

action

file or
Pandas DF

Optimization 1: partial aggregates
For some aggregates (e.g., sum, count, avg), we can compute
partial results prior to the exchange, often saving network I/O

Shuffle Partitions

X Y

A 1
A 3

B 2
C 4

D 5
D 6
A 7

A 8
B 9

m
ac

hi
ne

 1
m

ac
hi

ne
 2

...

...

...

...

How many partitions will we have?
• spark.sql.shuffle.partitions (default 200) sets this -- fixed for whole application
• 200 is often too much given dataset and cluster size
• Optimization 2: spark.sql.adaptive.coalescePartitions.enabled

(combine small partitions into few bigger ones)
• partition coelescing not available for Spark streaming (later lecture) see Epilogue:

Apache Spark 3.0

Parquet: Bucketed Data

X Y
A 1
A 3
A 7
A 8

D 5
D 6
C 4

B 2
B 9

m
ac

hi
ne

 1
m

ac
hi

ne
 2

Wouldn't it be fantastic if the data came pre-partitioned?
• Parquet-formatted Spark tables can be written this way
• Decide carefully which column to use based on future calculations
• You can only choose one per table! (though you could have copies)
• Optimization 3: bucketBy (when table was previously created)

Grouping Demos

Single-Machine Join Demos

Outline

Schema Inference

Collecting Data

Caching

Grouping

Joining

BHJ: Broadcast Hash Join

fruit_id cost
B 1
A 2
C 3

m
ac

hi
ne

 1
m

ac
hi

ne
 2

partition

fruit_id cost
A 4
C 5
B 6

id name
A Apple
B Banana

id name
C Carrot

we can apply the strategy from the coding demo to each partition of the bigger table

BHJ: Broadcast Hash Join

fruit_id cost
B 1
A 2
C 3

m
ac

hi
ne

 1
m

ac
hi

ne
 2

partition

fruit_id cost
A 4
C 5
B 6

id name
A Apple
B Banana

id name
C Carrot

IN MEMORY:
{'A': 'Apple',
 'B': 'Banana',
 'C': 'Carrot'}

IN MEMORY:
{'A': 'Apple',
 'B': 'Banana',
 'C': 'Carrot'}

Broadcast step
• a copy of the smaller table is sent to EVERY machine involved
• it is loaded to an in-memory hash table (dict) for quick lookup

BHJ: Broadcast Hash Join

fruit_id cost
B 1
A 2
C 3

m
ac

hi
ne

 1
m

ac
hi

ne
 2

partition

fruit_id cost
A 4
C 5
B 6

id name
A Apple
B Banana

id name
C Carrot

IN MEMORY:
{'A': 'Apple',
 'B': 'Banana',
 'C': 'Carrot'}

IN MEMORY:
{'A': 'Apple',
 'B': 'Banana',
 'C': 'Carrot'}

Hash Join Step
• don't transfer bigger table over network
• loop over it
• lookup keys in in-memory hash table (dict)

fruit_id name cost
B Banana 1
A Apple 2
C Carrot 3

fruit_id name cost
A Apple 4
C Carrot 5
B Banana 6

SMJ: Shuffle Sort Merge Join

fruit_id cost
B 1
A 2
C 3

m
ac

hi
ne

 1
m

ac
hi

ne
 2

partition

fruit_id cost
A 4
C 5
B 6

id name
A Apple
B Banana

id name
C Carrot

need to pull related data (same fruit_id) from both tables together to the same place

SMJ: Shuffle Sort Merge Join

fruit_id cost
B 1
A 2
C 3

m
ac

hi
ne

 1
m

ac
hi

ne
 2

partition

fruit_id cost
A 4
C 5
B 6

id name
A Apple
B Banana

id name
C Carrot

fruit_id cost

A 2

A 4

fruit_id cost
B 1
B 6
C 3
C 5

id name

A Apple

id name
B Banana
C Carrot

Shuffle+Sort Step

sorted within partitions

SMJ: Shuffle Sort Merge Join

fruit_id cost
B 1
A 2
C 3

m
ac

hi
ne

 1
m

ac
hi

ne
 2

partition

fruit_id cost
A 4
C 5
B 6

id name
A Apple
B Banana

id name
C Carrot

fruit_id cost

A 2

A 4

fruit_id cost
B 1
B 6
C 3
C 5

id name

A Apple

id name
B Banana
C Carrot

Merge Join Step

fruit_id name cost

A Apple 2
A Apple 4

fruit_id name cost

B Banana 1
B Banana 6
C Carrot 3
C Carrot 5

SMJ
• each table goes over the network about once

BHJ
• only the small table goes over the network
• but it goes about N times! (where N is the number of nodes involved)

When does BHJ tend to do well?
• when one table is much smaller than the other
• when the smaller table fits entirely into memory as a hash table
• when the smaller table does not need to be sent to too many nodes

Network I/O: SMJ vs. BHJ

Seeing Join Type with Explain

(calls
 .join(holidays, calls["CallDate"] == holidays["date"],  
 how="inner")
 .groupby("date", "holiday").count()).explain()

Simplified Output:

AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate - count
 +- Exchange hashpartitioning
 +- HashAggregate - partial count
 +- Project
 +- BroadcastHashJoin
 :- Filter isnotnull(CallDate#230)
 : ...
 +- BroadcastExchange
 +- Filter isnotnull(date#339)
 +- FileScan csv (holidays2.csv)

very large table
tiny table

using BHJ

send contents of
holidays2.csv to every

worker involved in the JOIN

Join Hints

(calls
 .join(holidays.hint("merge"),  
 calls["CallDate"] == holidays["date"],  
 how="inner")
 .groupby("date", "holiday").count()).explain()

Simplified Output:

AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate - count
 +- Exchange hashpartitioning
 +- HashAggregate - partial count
 +- Project
 +- SortMergeJoin
 ...

using SMJ

