| 544] Spark Internals
and Performance

Meenakshi Syamkumar

Learning Objectives

» select an appropriate caching level based on resources
available

* |dentify cases where hash partitioning Is necessary (instead of
regular partitioning) to bring "related" data together

» describe three major Spark optimization related to groups/
aggregates: partial aggregates, partition coalescing, and
Parquet bucketing

» describe two major distributed join algorithms (BH] and SM))
and the tradeofis between them

Outline

Schema Inference
Collecting Data
Caching
Grouping

Joining

With Schema Inference

df = (spark.read.format ("csv")

| / tasks, 33 seconds

* reads whole file to guess types
.load ("hdfs://nn:9000/sf.csv"))

Without Schema Inference

df = (spark.read.format ("csv") e | task, 0.3 seconds
* only reads header
.load ("hdfs://nn:9000/sf.csv")) * everything is a string
df = (spark.read.format ("csv") e 0tasks 0.04 seconds
.load ("hdfs://nn:9000/sf.csv")) * need to manually specify types
df = (spark.read.format ("parquet") e | tasks, 0.2 seconds

.load ("hdfs://nn:9000/sf.parquet”)) e« only reads schema info

Outline

Schema Inference
Collecting Data
Caching
Grouping

Joining

Collecting Data (OK)

df refers to parquet file

results = df.where(???).
results = df.where(???).

HDFS Large Parquet File

//// \\\\

CPU CPU

RAM

CPU CPU

— df partitions

Spark Workers
(2 computers)

Application
(1 computer)

Collecting Data (OK)

df refers to parquet file

results = df.where(???).
results = df.where(???).

HDFS Large Parquet File

‘ RAM
| \
taikl t07k2
CPU CPU
\
RAM

| \
task3 task4

\ I
CPU CPU

RAM

— df partitions

Spark Workers
(2 computers)

Application
(1 computer)

Collecting Data (OK)

df refers to parquet file

results = df.where(???).

results = df.where(???).

HDFS Large Parquet File

X

[177 NN/
4 X

| RAM
| \
taik5 t07k6
CPU CPU

\

\

| RAM

| \
task/ task8

\ I
CPU CPU

— df partitions

Spark Workers
(2 computers)

/

R

/

RAM

Application
(1 computer)

Collecting Data (bad)

df refers to parquet file

results = df.where{Z22).
results = df.where{224,

HDFS Large Parquet File

//// \\\\

CPU CPU

RAM

CPU CPU

— df partitions

Spark Workers
(2 computers)

Application
(1 computer)

Collecting Data (bad)

df refers to parquet file

results = df.where{Z22).

results = df.where{224,

HDFS

Large Parquet File

//// \\\\

RAM

\
task4

I
CPU

— df partitions

Spark Workers
(2 computers)

/out of memory! (only 2 of 8 partitions fit)

RAM
| \ |
taikl t07k2 taik3
CPU CPU CPU
\
Application
RAM PP

(1 computer)

Outline

Schema Inference
Collecting Data
Caching
Grouping

Joining

Persisting/Caching

//// \\\\

.« df partitions

df2 partitions

RAM RAM
Local local|l Spark Workers
ES FS (2 computers)
df refers to parquet file Scenario: want to do lots of computations on df2

df2 = df. Goal: avoid repeatedly reading HDFS and filtering df

Persisting/Caching

HDFS Large Parquet File

//// \\\\

— df partitions

RAM RAM

Local
FS

Local
FS

df2 partitions

Spark Workers
(2 computers)

from pyspark.storagelevel import Storagelevel Persist levels
df2 = df. .

df2. (Storagelevel.????) .

MEMORY_ONLY

MEMORY_ _ONLY SER
DISK_ONLY
others...

Persisting/Caching

//// NANANA
A

— df partitions

> df2 partitions
- |RAM L [RAM
- Local — Locall SPark Workers
ES FS (2 computers)
from pyspark.storagelevel import Storagelevel Persist levels
df2 = df. « MEMORY_ONLY
« MEMORY_ONLY_SER

df2. (StoragelLevel.222?) # is a shortcut » DISK_ONLY

e oOthers..

Documentation Snippet (https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning)

By default, Java objects are fast to access, but can easily consume a factor of 2-5x more space than the
“raw” data inside their fields. This is due to several reasons:

e Each distinct Java object has an “object header”, which is about 16 bytes and contains information
such as a pointer to its class. For an object with very little data in it (say one Int field), this can be

bigger than the data.

e Java Strings have about 40 bytes of overhead over the raw string data (since they store it in an
array of Chars and keep extra data such as the length), and store each character as two bytes due
to String’s internal usage of UTF-16 encoding. Thus a 10-character string can easily consume 60

bytes.

e Common collection classes, such as HashMap and LinkedList, use linked data structures, where
there is a “wrapper” object for each entry (e.g. Map. Entry). This object not only has a header, but
also pointers (typically 8 bytes each) to the next object in the list.

e Collections of primitive types often store them as “boxed” objects such as java. lang. Integer.

Local
FS

llll RAM

df2 partitions

Locall Spark Workers
FS (2 computers)

from pyspark.storagelevel import StorW

df2 = df.

p
df2. (Storagelevel.????)

Persist levels

MEMORY_ONLY
MEMORY_ ONLY SER
DISK_ONLY

others...

https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning

Documentation Snippet (https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning)

By default, Java objects are fast to access, but can easily consume a factor of 2-5x more space than the
“raw” data inside their fields. This is due to several reasons:

e Each distinct Java object has an “object header”, which is about 16 bytes and contains information
such as a pointer to its class. For an object with very little data in it (say one Int field), this can be
bigger than the data.

e Java

array g
to St
bytes.
e Comm

there |
also p
e Collec

When your objects are still too large to efficiently store despite this tuning, a much simpler
way to reduce memory usage is to store them in serialized form, using the serialized

More documentation (https://spark

.apache.org/docs/2.2.2/tuning.html#memory-tuning)

Storagelevels in the RDD persistence API, such as

store each RDD partition as one large byte array. The only downside of storing data in
serialized form is slower access times, due to having to deserialize each object on the fly.

. Spark will then

RAM

Local
FS

llll RAM

df2 partitions

Locall Spark Workers
FS (2 computers)

from pyspark.storagelevel import StorW

df2 = df.

df2.

e

(Storagelevel.????)

Persist levels

MEMORY_ONLY

MEMORY_ ONLY SER
DISK_ONLY
others...

https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning
https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning

Persisting/Caching

//// \\\\

— df partitions

df2 partitions

RAM RAM
b Local local|l Spark Workers
L seridlized - serialized -~ (2 computers)
from pyspark.storagelevel import Storagelevel Persist levels
df2 = df. « MEMORY_ONLY
« MEMORY_ONLY_SER
df2. (StoragelLevel.????) DISK ONLY

e oOthers..

Persisting/Caching

//// \\\\

— df partitions

df2 partitions

RAM RAM
HiH Spark Workers

Local Local
FS Fs | (2 computers)

from pyspark.storagelevel import StoragelLevel Persist levels (2x replication)
df2 = df. « MEMORY_ONLY_2
« MEMORY_ONLY_SER_ 2

df2. (StoragelLevel.????) « DISK ONLY 2
* others..

Replication benefits
* two choices for where to run task without needing network transfer
* If a worker dies, no need to re-compute cached data

Replication downside
* uses twice as much space

RAM

Local
FS

OT pPar Cucrorts—

Local
FS

from pyspark.storagelevel import Storagelevel

/

df2 partitions

Spark Workers
(2 computers)

Persist levels (2x replication)

df2 = df. MEMORY_ONLY_2
— MEMORY_ONLY_SER_2
df2. (StoragelLevel.????) DISK _ONLY 2

others...

T

TOP AAT

Demos...

Outline

Schema Inference
Collecting Data
Caching
Grouping

Joining

GROUPS, AGGREGATES

___________________________ Y
________ Ao
________ A i3
X y 7 A i]

A A S X i TOTAL
__________ 3 1
2
A
2
________ 6 .

A A AGGREGATES
8 (I row per group)

9

GROUPS

Logically
* lots of groups
* need to bring related
(grouped) data together
e stats per group

Spark: Physical Execution on Partitions

partition
T x v : N
~ - il I X Y
o | | B T A |
Al s] T ALl s
5| M——— | - —|_.X_ TOTAL
cEl oommm - | 090 | B . A 9
\/ A | 8
A\ £ j
N/ \
-~ B 1
N
=
-
&
S
Logically Physically (Spark)
* lots of groups RDDs broken into partitions
* need to bring related * generally many groups per partition

(grouped) data together ¢ tasks processing partitions run on specific machines
* stats per group * generally multiple partrtions per machine

Spark: Physical Execution on Partitions

partition

T x v N
_ | | B N R . X i Yo
O | | E T A |
c A 3 1 | A """" A 3 """" ;
A R ——| X TomL
A e AL T R

NV i

NS,

\V4
2
................... 4’
A~ 9
()
£
s ———/ ., 1 k
= 5 —> action
6
wide narrow
transformation transformation X {TOTAL

requires exchange/shuffle
(needs network 1/O)
file or

Pandas DF

Spark: Physical Execution on Partitions

partition
— | [P A] e S Y.
Q | | e I A |
= A 31 | A 3 s
= ————l B S - > X TOTAL
s (\oeomm - |90 | L A A | 19
N\ H——
A\ £
\/
~
)
k=
\
£ action
normal "hash" |))j
partitioning partitioning X TOTAL

any row can be In
any partition

rows with the same
"key" (selected by
user) will be in the
same partrtion

file or
Pandas DF

Spark: Physical Execution on Partitions

machine |

machine 2

partition

X Y
A |
A 3

N

________ X Y

________ AL

________ A3

________ A
A 8

J

X TOTAL

......................................

\/

\\

action

can we send less data?

)

X TOTAL

file or
Pandas DF

Spark: Physical Execution on Partitions

partition
K X Y \
— | | F A | """"" X Y
AEE | :
e A7 |7 —| X TOTAL
= - Eemaes i
AT A 9
N2
\/
N
Q
<
5 k
g action
X TOTAL

Optimization |:partial agoreoates
For some aggregates (e.g., sum, count, avg), we can compute
partial results prior to the exchange, often saving network 1/O file or

Pandas DF

Shuffle Partitions

. X Y - A
2B - _— . >
i
= —>
= N
p i J
\/
>)
»
N
) —>
C
'_{:_J —
(4]
E —p
—
1 J

OREILLY

Learning

How many partitions will we have? /

. (default 200) sets this -- fixed for whole application
« 200 is often too much given dataset and cluster size
* Optimization 2:
(combine small partitions into few bigger ones)
* partition coelescing not available for Spark streaming (later lecture)

see Epilogue:
Apache Spark 3.0

Parquet: Bucketed Data

. X Y h
| B A LI
e | A 3 » ,
S A 7
S| | A 7
- A 8

AN

machine 2

_J

Wouldn't it be fantastic if the data came pre-partitioned?
» Parquet-formatted Spark tables can be written this way
* Decide carefully which column to use based on future calculations
* You can only choose one per table! (though you could have copies)
* Optimization 3:

Grouping Demos

Single-Machine Join Demos

Outline

Schema Inference
Collecting Data
Caching
Grouping

Joining

BH|: Broadcast Hash Join

partition

machine |

machine 2

......................................

C | Carrot
\

AN

/

we can apply the strategy from the coding demo to each partition of the bigger table

BH|: Broadcast Hash Join

partition

)
§=
e
O
g IN MEMORY:
{'"A': 'Apple',
'B': 'Banana',
'C': '"Carrot'}
(@
()
k=
e
O
g . IN MEMORY:
________ id | name | {("A': 'Apple’,
D= 'B': 'Banana',
k C E Carrot 'C': 'Carrot'}

AN

Broadcast step
* acopy of the smaller table is sent to EVERY machine involved
* itisloaded to an in-memory hash table (dict) for quick lookup

BH|: Broadcast Hash Join

partition

fruit |d name cost

()
=
=
O
g IN MEMORY:
{'"A': 'Apple',
'B': 'Banana',
'C': '"Carrot'} 4//
(@
()
£
.
O
g : IN MEMORY:
________ id | name {'A': 'Apple’,
- 'B': 'Banana',
k C | Carrot 'C': 'Carrot'] J

Hash Join Step
* don't transfer bigger table over network
* |oop overit
* lookup keys in in-memory hash table (dict)

SM|: Shuffle Sort Merge Join

partition

machine |

machine 2

......................................

C | Carrot
\

AN

/

need to pull related data (same fruit_id) from both tables together to the same place

sorted within partitions

SMJ: Shuffle Sort Merge Joiy o

~

machine |

AN

machine 2

C Carrot : ;
_..id__: name
B _:Banana

C | Carrot

Shuffle+Sort Step

SM|: Shuffle Sort Merge Join

partition

machine |

machine 2

fruit_id: name | cost

C | Carrot

- Carrot , 5
B Banana_

Carrot

Merge Join Step

Network |1/O: SM| vs. BH]

SM]

* each table goes over the network about once

BH]J
* only the small table goes over the network
* but it goes about N times! (where N is the number of nodes involved)

When does BH]J tend to do well?

* when one table is much smaller than the other
* when the smaller table fits entirely into memory as a hash table
* when the smaller table does not need to be sent to too many nodes

Seeing Join Type with Explain

very large table

tiny table
~

(calls ‘(////

.jJoin(holidays, calls["CallDate"] == holidays|["date"],
how="1inner")
.groupby("date”", "holiday").count()).explain()

Simplified Output:

AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate - count
+- Exchange hashpartitioning
+- HashAggregate - partial count

+- Project using BH]
+- BroadcastHashJoin‘///‘
:— Filter isnotnull(CallDate#230) send contents of

.. holidays2.csv to every
+- BroadcastExchange 4/WOF|(GF involved in the JOlN
+- Filter isnotnull(date#339)
+- FileScan csv (holidays2.csv)

Join Hints

(calls

.join(holidays.hint("merge"),
calls["CallDate"] == holidays["date"],
how="inner")

.groupby("date”, "holiday").count()).explain()

Simplified Output:

AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate - count
+- Exchange hashpartitioning
+- HashAggregate - partial count
+- Project
+- SortMergeJoin <—— using SMJ

