544] HBase and Cassandra

Meenakshi Syamkumar

Learning Objectives

» describe HBase's approach to reliability (HDFS replication,
RegionServer fallover)

» describe the data models for HBase and Cassandra (wide
row and wide partition, respectively)

» select columns Cassandra table to serve as partition keys,
cluster keys, and static columns to make specific operations
efficient

Hadoop Ecosystem

Yahoo, Facebook, Cloudera, and others developed open-
source Hadoop ecosystem, mirroring Google's systems

Google Hadoop, Ist gen Modern
(paper only) (open source) Hadoop
Distributed File System GFS
Distributed Analytics MapReduce Hadoop
y P MapReduce
Distributed Database BigTable HBase
Dynamo
(Amazon)

Ecosystem: Ambari, Avro, Cassandra, Chukwa, HBase, Hive,
Mahout, Ozone, Pig, Spark, Submarine, Tez, ZooKeeper

https://hadoop.apache.org/

https://hadoop.apache.org/

Google Architecture

MapReduce (2004 paper) BigTable (2006 paper)
GFS: Google File System (2003 paper)

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

radical idea: base everything on lots of cheap, commodity hardware

Hadoop Ecosystem

HDFS

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

Hadoop Ecosystem

Hadoop MapReduce
HDFS

Cassandra

DataNode DataNode Worker Worker

Local FS Local FS Local FS Local FS

Outline: HBase and Cassandra

HBase
Cassandra Data Model

Demos

HBase Data Model:Versioned Sparse Tables

columns

a b C e X V4 y 4

5 apple

rows

table["2:y"] 1s "apple"

HBase Data Model:Versioned Sparse Tables

columns columns grow over time,
a b Pe e X y y 2 much like rows
>
1 totally cool for each row
to have very different columns
apple
2
3
all the empty cells don't waste space
rows (like NULLs might in a traditional DB)
7
8
9
\ 4

table["2:y"] 1s "apple"

HBase Data Model:Versioned Sparse Tables

columns

a b C e X V4 y 4

2 [liwi

rows

table["2:y:v1"] 1s "apple"
table["2:y:v2"] 1s "kiwi"

Partitioning the Row Space

>
1
RegionServer row ranges are called "regions"
2
regions may grow/split
3
a region is assigned to ONE HBase
"RegionServer" at any given time
rows
7 RegionServers could server multiple regions
8 RegionServer
9
v

Transactions

>

1

0 RegionServer Rows are never split across regions

3 HBase only support single-row transactions

Design implication: try to keep all of a user's
rows data in ONE row, even if it means millions of

columns
7
RegionServer
8
9
v

Fault Tolerance: what if a RegionServer dies!?

Fows

>
1
0 RegionServer
3
7
8 RegionServer

Rows are never split across regions
HBase only support single-row transactions
Design implication: try to keep all of a user's

data in ONE row, even if it means millions of
columns

Fault Tolerance: what if a RegionServer dies!?

RegionServers store region data inside HDFS files

ideally a RegionServer is placed on the same machine as a DataNode holding most of its data

Fault Tolerance: what if a RegionServer dies!?

offline/dead

region data

j \ \ still safely
3x replicated

HDEFS files

Fault Tolerance: what if a RegionServer dies!?

offline/dead

handoff regions
to healthy

RegionServers

HBase Storage Layout

Observation:
* starting a write operation on disk has a very high fixed cost

sequential = fast

random = slow

Strategy:
* store new data In memory until we have a lot of data
* then do one big write to disk

HBase Storage Layout

write

-

kl=hi

HDFS
(backed by hard drives)

HBase Storage Layout

write

:

kl=hi | k5=apple

HDFS
(backed by hard drives)

HBase Storage Layout

write

-

kl=hi | k5=apple | k3=cat

HDFS
(backed by hard drives)

HBase Storage Layout

write

:

kl=hi | k5=apple | k3=cat | k9=dog

HDFS
(backed by hard drives)

HBase Storage Layout

sort+flush

kl=hi | k3=cat | k5=apple | k9=dog

HDEFS
file

HDFS
(backed by hard drives)

HBase Storage Layout

write

-

k6=moon

kl=hi | k3=cat | k5=apple | k9=dog

HDEFS
file

HDFS
(backed by hard drives)

HBase Storage Layout

sort+flush

k2=bye | kd4=sun | k6=moon | k9=pup

kl=hi | k3=cat | k5=apple | k9=dog

HDFS
file

HDEFS
file

HDFS
(backed by hard drives)

HBase Reads

check multiple HDFS files when looking up keys

what is the value for k3? what about for k9?

k2=bye | kd4=sun | k6=moon | k9=pup

kl=hi | k3=cat | k5=apple | k9=dog

HDFS
file

HDEFS
file

HDFS
(backed by hard drives)

HBase Reads

check multiple HDFS files when looking up keys

what is the value for k3? what about for k9?

"tombstones" are used when we delete data

(need to write something -- can't erase old version in finalized file)

k2=bye | kd4=sun | k6=moon | k9=pup

kl=hi | k3=cat | k5=apple | k9=dog

HDFS
file

HDEFS
file

HDFS
(backed by hard drives)

Compaction

If there are too many files, reads become too slow.

Solution: compact/combine smaller files into bigger files

/r k2=bye | kd4=sun | k6=moon | k9=pup

A kl=hi | k3=cat | k5=apple | k9=dog

\| k1=hi | k2=bye | k3=cat | k4=sun |

\k5=apple| k6=moon | k9=pup

HDFS
file

HDEFS
file

HDES
file

HDFS
(backed by hard drives)

Compaction

If there are too many files, reads become too slow.

Solution: compact/combine smaller files into bigger files

kl=hi | k2=bye | k3=cat | k4=sun |
k5=apple| k6=moon | k9=pup

HDES
file

HDFS
(backed by hard drives)

Outline: HBase and Cassandra

Cassandra Data Model

Demos

Clusters

worker emmmd Worker worker

worker worker [N \yorker

Cassandra clusters have many worker nodes
* No centralized boss node (unlike HDFS, Spark)
* Not necessarily same data center (could be geographically distributed)
* Clusters are called "rings" because some nodes are defined to be "adjacent”

Clusters

rack |
_>
rack 2

\

_>
Cassandra clusters have many worker nodes

* No centralized boss node (unlike HDFS, Spark)

* Not necessarily same data center (could be geographically distributed)

* Clusters are called "rings" because some nodes are defined to be "adjacent”
* Ring organization doesn't necessarily correspond to network topology

Keyspaces

worker

ksl, repl=2 ks2, repl=3

worker

worker

Keyspaces
* similar to databases on database servers
* keyspaces store data across many workers
« different keyspaces can have different replication settings

Each keyspace might contain many tables.

HBase: "Wide Row" design

Fows

columns

one machine

Cassandra: "Wide Partition” design

columns

a b C X Yy y 4 X Yy y 4

non-repeating repeating

Fows

Cassandra: "Wide Partition” design

columns
a b C X y y4
non-repeating repeating Advantages
(stacked) . so can use SQL-like

queries: Cassandra Query
Language ()

* can keep related data on same
machines

rows Disadvantages
: . partitions: imbalanced storage
. partitions: other imbalance

one set of machines

Cassandra: "Wide Partition” design

:one
: uniquely identifies value per partition key

partition, determines machine placement .
determines sort order
within partition

a b

C X y y4
non-repeating repeating
(stacked)

Primary Key Details
. uniguely identifies row
° parts:
| + partition keys and O+ cluster keys

Fows

one set of machines

Shema Example:Weather Data

primary key: (station_id, date)

station_id station_name date temp
non-l’epeating repeating
123 MadlsonAP 2023-03-01 50
2023-03-02 52
rows
2023-03-03 42
456 Milwaukee 2023-03-01 55
2023-03-02 48
v [X X J 00
Advantages Challenges
* can get all data for one station * need to anticipate common queries
without scanning the whole cluster * carefully choose partition keys and cluster
(100s of machines) columns
* looking up dates in a range for a * too many partitions: queries hit many nodes

station Is fast (pre-sorted) * 1oo few partitions: imbalance

Schema Example:Weather Data

station_id station_name date temp
non-repeating repeating
123 MadisonAP 2023-03-01 50
2023-03-02 52
rows
2023-03-03 42
456 Milwaukee 2023-03-01 55

2023-03-02 48

TopHat

Outline: HBase and Cassandra

HBase
Cassandra Data Model

Demos

* Deployment

* cqlsh

* Python (cassandra-driver package)

* Spark (external data source)

