544 Katka Streaming

Meenakshi Syamkumar

Learning Objectives

» describe the benefits of using streaming for ETL (extract
transform load) work

« write code for Kafka and N order to
interact with data that stored by

» scale out brokers and consumers by configuring
and , respectively

Outline: Kafka Streaming

Sending/Receiving Messages
* RPC (Remote Procedure Calls)
¢ Streaming

ETL (Extract Transform Load)

Kafka Design

Procedure Calls

counts = {
"A": 123,
}

def increase (key, amt):
countsl[key] += amt
return counts|key]

curr = 1ncrease ("A", 5)
print (curr) # 128

Remote Procedure Calls (RPCs)

client server
counts = {
"A": 123,

}

def increase (key, amt) :
curr = 1ncrease ("A", D) countsl[key] += amt
print (curr) # 128 return counts[key]

client

Remote Procedure Calls (RPCs)

client

def increase (key, amt):

...code to send

curr = 1ncrease ("A", 5)
print (curr) # 128

Server

computer |

def rpc server():
...code to receive

counts = {
"A": 123,
}

def increase (key, amt) :
counts[key] += amt
return counts/[key]

computer 2

Remote Procedure Calls (RPCs)

client

def increase (key,
...code tolsend

amt) :

curr = 1ncrease ("A", 5)
print (curr) # 128
computer |

response
message

server

def rpc server():
...code to receive

counts
"A" :
}

def increase (key, amt) :
counts[key] += amt
return counts/[key]

computer 2

Serialization/Deserialization

client server

serialize deserialize 3¢T rPc_server () : ,
- ...code to receive

def increase (key, amt)
...code tolsend

serialize
counts = {

"A": 123,

deserialize

}

def increase (key, amt) :
curr = 1ncrease ("A", D) countsl[key] += amt

print (curr) # 128 return counts[key]

computer | computer 2

response

message
args somehow encoded as bytes: return val as bytes:
b' {"key" : "A" b'5'

"amt " 5}!

gRPC uses protocol buffers for wire format

client

def increase (key, amt) ...jlize

...code tolsend

deserialize

server

def

rpc server () :
...code to receive

deserialize

curr = 1ncrease ("A",
print (curr) # 128

o)

computer |

protobuf (args to bytes)
b'1001000101011111"

(contains "A" and 5)

serialize
counts = {

"A" .

}

def increase (key,
counts [key]

amt) :

+= amt

return counts/[key]

computer 2

response
message

protobuf (ret val to bytes)
b'01000000"

(contalins 128)

Synchronous vs. Asynchronous Communication

* both parties have to participate at the same time
* examples; phone call, RPC call

client m server

>

* one party can send any time, the other can receive later
* examples: emall,

producer m broker consumer

>

Outline: Kafka Streaming

Sending/Receiving Messages

ETL (Extract Transform Load)
* Batch
¢ Streaming

Kafka Design

Extract Transform Load (ETL)

Database | Database 3
OLTP (online OLAP (9n|ine
processing) processing)

row-oriented storage: g etl-1.py > | col-oriented storage:

coll,col?2,col3,...

etl-2. /
data warehouse

row | ,row2,row3,...

Database 2
OLTP (online
processing)
. ETL Code
row-oriented storage: . .
* needs to detect what is new (e.g., by timestamp)
row | row2.row3... . : Linux program to run programs on a schedule
* Google's can similarly launch tasks

(other clouds have similar options)

issue |:data freshness

Extract Transform Load (ETL)

Database | Database 3

OLTP (online OLAP (online
processing)

processing)
row-oriented storage: g etl-1.py > | col-oriented storage:

coll,col?2,col3,...

etl-2. /
data warehouse

Database 2 HDES

OLTP (online some parquet files
processing) etl-3.py >

row-oriented storage: used by MapReduce,

\ / Spark, etc.
etl-4.py

row | ,row2,row3,...

row | ,row2,row3,...

data lake
if we have X OLTP databases and Y derivative stores, how many ETL programs must we write!?

issue 2: scaling engineering effort

Too much ETL... [—

The Log: What every software

| | engineer should know about
Don't want data transfer between every pair of DB/services real-time data's unifying

* Jay Krepps helped build Kafka at LinkedIn abstraction
* Later co-founded Confluent (Kafka-based company) © e o=
* Partners with cloud providers to provide Kafka as a o

service | joined LinkedIn about six years ago at a particularly

https://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

~— > >
m ™~ >
»> »> >
Espresso Operational Operational
Voidemort Oracle P
JI - I]I e s ~0g Metrics

=
— SR image from blo
\ %Ws‘@lé“""%p\‘t*\”)\ ge s

Data
Warehouse

Soclal Hec.

Log
Hadoop Monitoring Graph Engine

Search securnity | ... Emall

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Unified Log =

The Log: What every software

Centralize changes in a distributed logging service engineer should know about
* Many writers (called producers) real-time data's unifying
* Many readers (called consumers) abstraction

| | | | B 1o e oecomber 16201 'y Tweet
Data is constantly flowing, so ETL can be done in realtime

(instead Of ba'tCh jObS WIT_h CI"Oﬂ) | joined LinkedIn about six years ago at a particularly

https://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

Operational Operational

User Tracking Logs Metrics

<
>
Espresso I

image from blog

Unifled Log
<. -~ —_— — — e — =g |
| |
| |
Hadoop Log Monitoring e | Soctal e Search Security Emall |
Search Warehouse | 1| Graph Engine |
|
|
' .
| |
| |

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Outline: Kafka Streaming

Sending/Receiving Messages
ETL (Extract Transform Load)

Kafka Design
* Jopics
* Producers, Consumers, Brokers
* Scalability with Partitioning

Topics

Kafka (managed by
servers called)

oo EEIER

politics m

sports

admin = KafkaAdminClient(...)
admin.create_topics([NewTopic("sports", ...)])

plip 1nstall kafka-python

Producers Publish (pub/sub)

Kafka
(code you write)

(managed by

servers called

)

producerl —>

o [

producer? g —

politics

e

producer3

sports

producer3 = KafkaProducer(...)
producer3.send("sports’, ...)

Consumers Subscribe (pub/sub)

Kafka (managed by
(code you write) servers called)

producer | —> weather m m

(code you write)

consumerl

consumer?
— —
politics — 4 consumer3
<
/ consumer4

producer?

producer3

sports m

consumer3 = KafkaConsumer(...)
consumer3.subscribe(["sports"])

Receiving Messages

Kafka (managed by
(code you write) servers called)

/
producer | —> weather m m

- ‘} o , 0
s m - —»

(code you write)

consumerl

producer?

producer3

sports m

consumer3 = KafkaConsumer(...)
while True:
batch = consumer3.-0l1(211?)
for topic, messages in batch.items():
for msg in messages:

loop
generally runs forever
poll (ideally) returns some messages the consumer
hasn't seen before, from any subscribed topic
leaves messages intact on brokers (for other
consumers), unlike many prior streaming systems

What's in a Message!

Message parts
. (optional): some bytes
. (required): some bytes
* other stuff...

producer.send ("topic", value=?77?7?)
OR

producer.send ("topic", value=?2??7?, key=?7?7?7?)

Common usage: the value is usually some kind of structure with many values. The key is
used for partitioning and is usually one of the entries in the value structure.

Python dict => bytes:

d = {...}
value = bytes(json.dumps(d), "utf-8")

Protobuf => bytes:

msg = mymod pb2Z.MyMessage(...)
value = msg.SerializeToString ()

Scaling the Brokers

Kafka (managed by
(code you write) servers called) (code you write)

gy £
purchases (topic) m

e

m clicks (topicE m m M

broker server

producer3

producer4

problem: some topics might have too many messages for one
machine (or set of machines with replicas) to keep up

Pa. I‘tltl ons Kafka (managed by

(code you write) servers called)

roducerl ‘@
N purchases[0]

0 | 2 3
broker server
producer5
clicks[0] msg msg msg msg msg
0 | 2 3 4
clicks[2] msg msg msg msg
0 | 2 3

Topics can be created with N partitions broker server
* each partition is like an array of messages
* partitions are assigned to brokers
* each producer using a stream works with all partitions

Changing
Partitions

(code you write)

Kafka
servers called)

(managed by

d
—.appen

A

e b

:*I purchases[0]

5 6 7 8

cIicks[I]

msg msg msg msg

0 I 2 3

broker server

producer5

delete
clicks[0] . 4 4 msg msg msg
’ 2 3 4
still 2
o]
0 | 2 3

Changes
. right
. left (depends on "retention” policy)

* delete does NOT change indexes

broker server

Selecting afla concs (managed by
PartItIOnS (code you write) servers called)

roducerl ‘@
N purchases[0]

0 I 2 3
broker server
producer5
clicks[0] msg msg msg msg msg
0 I 2 3 4
case |:message only has value
* producer rotates between partitions clicks[2] msg msg msg msg
e called policy 0 I 2 3
case 2: message has key and value broker server

* calculate partition, for example:

* same keys will go to the same partition
* can plug in alternative partitioning schemes

Consumers: Read Offsets

batch = consumer.poll (1000)
Topic Partitions for topic, messages in batch.items () :

clicks[0] print ("partition", topic.partition)
for msg 1n messages:
print (msg.value)
clicks[1]
clicks[2]
clicks[3]

___________________ Batches

clicks[0]; 2 poll returns batches (when enough data or timeout)
clicks[ITi | * batches contain some subset of partitions

clicks[2] 4 * some number of messages in partition, starting at
------------- et offset

clicks[3]] 3

Example |
batch = consumer.poll (1000)

Topic Partitions for topic, messages in batch.items () :

clicks[0] print ("partition", topic.partition)
for msg 1n messages:
print (msg.value)
clicks[1]
output:
partition O
clicks[2] h'C!
b'D'
clicks[3]
Offset Batches
clicks[0]; 4 poll returns batches (when enough data or timeout)
clicks[ITi | * batches contain some subset of partitions
"""""""""""""""""""" * some num f mess | iti |
cicks[2] 4 Oc%cset number of messages In partition, starting at
clicks[3]i 3

Example 2
batch = consumer.poll (1000)

Topic Partitions for topic, messages in batch.items () :

clicks[0] print ("partition", topic.partition)
for msg 1n messages:
print (msg.value)
clicks[1]
output:
partrtion |
clicks[2] Hh'F'
b'G’
b'H’
bl
clicks[3] partition 3
b'R'
Offset Batches
clicks[0]; 2 poll returns batches (when enough data or timeout)
clicks[ITi 5 * batches contain some subset of partitions
"""""""""""""""""""" ¢ some number of messages in partition, starting at
dicks2]. 4 Oc%cseet nu ro ges In partition, starting
clicks[3] 4

Example 3
batch = consumer.poll (1000)

Topic Partitions for topic, messages in batch.items () :

print ("partition", topic.partition)

licks[O
clicksO] for msg 1n messages:
print (msg.value)
clicks[1]
output:
partrtion |
clicks[2] b'H
clicks[3]
Offset Batches
clicks[0]; 2 * poll returns batches (when enough data or timeout)
clicks[1T] 2 * batches contain some subsgt of pallrltitions |
dicksi2]. 4 e some number of messages In partition, starting at
............. offset
clicks[3]] 3

Partially vs. Totally Ordered

Some things are , like integers. Either x <y ory >=x.

Other things are , like git commits. Sometimes you can
compare, sometimes you can't!

A<B A<C D<E

Can't compare B and C
Can't compare D and F

Ordering Kafka Messages

Kafka Messages are . Messages are consumed from a
partition in the order they were written to that partition (no guarantees
across topics or across partitions).

If A and B share the same topic and key, and B was produced after A, then:

* we say B "happened after" A
* A and B will be in the same partition (assuming partition count is constant)
* each consumer group of the topic will consume A before B

Choose your key carefully! Try to create enough partitions inrtially and never
change It.

No keys specified => no guarantee about what order messages are
consumed.

Seek to an Offset o |
part = TopicPartition("clicks", 3)

Topic Partitions offset = 6
: consumer.csecek (part, offset)
clicks[0]

Read pattern
* consumers normally read forward sequentially
e scek can jump back (or ahead)
» useful if processing batch failed:
just go back and retry

clicks[3]] 76

c = KafkaConsumer ("clicks",

Consumer Groups o e
Topic Partitions batch = c.poll(1000)
clicks[0]

clicks[1] =
: consumer
- group | (g)
clicks[2] consumer

. group 2 (g2)

cicksl3]
I 2

0 3
gl offsets g2 offsets GI’OUpS
dickso]. 2 3 - different applications might operate independently
C|IC|(S|| ---------------- --------------------------------- * they should ALL get a chance to consume messages
""""""""" e @ ieed offsets for each topic/partition/consumer
Clicks[2]: 4 - 4 sroup combination
clicks[3] 3 3

c = KafkaConsumer ("clicks",

Consumer Groups group_id="gl",

c..)
Topic Partitions batch = c.poll(1000)
clicks[0]
clicks[1] E
: consumer
. group | (gl)
clicks[2] . consumer
. group 2 (g2)
clicks[3] O
0
gl ¢
gl offsets g2 offsets Groups
clicks[0] | 2 3 » different applications might operate independently
cllcksll """""""" 2 """""""" * they should ALL get a chance to consume messages
------------- * need offsets for each topic/partition/consumer
clicks[2] . 4 o 4 sroup combination
clicks[3] 3 3

c = KafkaConsumer ("clicks",

Consumer Groups Jroue LA
Topic Partitions batch = c.poll(1000)
clicks[0]
clicks[1] E

: consumer

. group | (gl)
clicks[2] . consumer

. group 2 (g2)
clicks[3]

gl offsets g2 offsets Groups

clicks[0] : 2 3 » different applications might operate independently
dgickstli 1 -, * they should ALL get a chance to consume messages
------------- e @ Need Offsets for each topic/partition/consumer
Clicks[2]: 4 _— 4 group combination
clicks[3] | 3 ; 4

c = KafkaConsumer ("clicks",

Consumer Groups group_id="gl",

e)
Topic Partitions batch = c.poll(1000)
clicks[0]
clicks[1] E F G H I
| 2 3 4 : consumer
- group | (g1)
clicks{2] consumer 2 REMac
. group 2 (g2)
clicks[3]
gl offsets g2 offsets Groups
clicks[0] : 2 3 » different applications might operate independently
dgickstli 1 -, * they should ALL get a chance to consume messages
------------- * need offsets for each topic/partition/consumer
Clicks[2]: 4 . e 4 group combination
clicks[3] | 4 ; 4

Partition Assignment: Manual

Topic Partitions

tp0 = TopicPartition("clicks",
consumer?2.assign([tp0, tpll)
consumer3.assign([tp2, tp3])

: consumer
. group | (gl)

consumer

clicks[0]
clicks[1] E = G H
I 2 3
clicks[2]
clicks[3] '®) P Q R
0 I 2
partition offse:ts, per group
gl offsets | g2 offsets
clicks[O 2 3
clicks[| I 2
clicks[2 4 4
clicks[3] 4 4

clicks[3]

partition assignments, per group

. gl assignment | g2 assignment

..
..
....................................

....................................

consumer |

0)

Partition Assignment: Automatic

Topic Partitions

consumer 3:

Assignment and re-assignment

by default, consumers are automatically assigned
partitions when they start polling

challenge: Kafka shouldn't re-assign a partition in the
middle of a batch (might double process messages)

clicks[0] “ﬂl%é;itéifktf:
clicks[1] E F G H I
C|iCkS[2]

0 | 3 ‘;
et

0 | 2 3

clicks[3] :

8 consumer 3 §E

subscribed to clicks

consumer.pol l (1000)
for topic,

msgs 1n batch.items () :

for msg in msgs:

consumer.close ()

consumer
group 2 (g2)

3 consumer 4 §

partition assignments, per group
. gl assignment | g2 assignment

..
..
....................................

....................................

consumer |

Partition Assignment: Automatic

Topic Partitions

clicks[0]

AN

consumer 3:
while True:
batch
for topic,
for msg in msgs:

clicks[1] E F G H |
| 2 3 4
clicks[2]
0 | 3 -
=
o I 2 3

Assignment and re-assignment

* by default, consumers are automatically assigned
partitions when they start polling

* challenge: Kafka shouldn't re-assign a partition in the
middle of a batch (might double process messages)

clicks[

8 consumer 3 §E

subscribed to clicks

consumer.pol l (1000)

msgs 1n batch.items () :

consumer.close () «—— best to take away

a partition at
these points

consumer
group 2 (g2)

3 consumer 4 §

partition assignments, per group
. gl assignment | g2 assignment

..
..
....................................

....................................

consumer |

Partition Assignment: Automatic

Topic Partitions # consumer 3: subscribed to clicks
, while True:
clicks[0] batch = consumer.poll (1000)
for topic, msgs 1n batch.items () :

\ for msg in msgs:

clicks[1] EFFE ' 'H consumer.close () «—— best to take away
a partition at
these points

clicks[2]

R B consumer 3 [
consumer 3 E
. group 2 (g2)

clicks[3]

partition assignments, per group
gl assignment g2 assighment
Assignment and re-assignment ' |
* by default, consumers are automatically assigned
partitions when they start polling
* challenge: Kafka shouldn't re-assign a partition in the , |
middle of a batch (might double process messages) clicks[3] consumer | consumer 4

Segment Files: Log Rollover and Deletion

broker server

a partition of a topic a partition of a topic
0 | 2 P\ 3 4 \ 0 | 2
v v v v
active active
Local File System (on an SSD or HDD)

e partitions are divided into consecutive regions and saved in seoment files
* all new data is sequentially written to the end of an active seement

Segment Files: Log Rollover and Deletion

broker server

a partition of a topic a partition of a topic
T T 17 1 1
0 I 2)3 4 5\ 0 I 2
v v v v
active active
Local File System (on an SSD or HDD)

e partitions are divided into consecutive regions and saved in seoment files
* all new data is sequentially written to the end of an active seement

Segment Files: Log Rollover and Deletion

broker server

a partition of a topic a partition of a topic
T T 17 1 11
0 | 2 P\ 3 4 5 \6 \ 0 | 2
v v v v
-
active active
Local File System (on an SSD or HDD)

e rollover: current segment is finalized (no more changes)
* new segment Is created and becomes active

Segment Files: Log Rollover and Deletion

broker server

a partition of a topic a partition of a topic
\3 4 5 \6 \ 0 I 2
v v

segment file - segment file

active active

Local File System (on an SSD or HDD)

:old segment is deleted
* always starts from smallest offset
* active segment 1s NEVER deleted

Log Policy

Rollover and retention policies are configurable in Kafka.

Rollover
* setting |: max segment age (=7/ day by default)
e setting 2: max segment size (=GB by default)

* rollover happens when segment gets too big or too old (whichever happens first)

Retention/Deletion
e setting |:log age cutoff (=7/ days by default)
* setting 2:log size cutoff (=disabled by default)
* deletion happens on oldest segment when log Is too big or has records too old
* note: age cutoff applies to newest messages in a segment, so there will probably be
some older ones in the same segment past the cutoff. Not useful for legal compliance
with data retention laws.

https://www.conduktor.io/blog/understanding-kafkas-internal-storage-and-log-retention/

TopHat

