544 Katka Reliability

Meenakshi Syamkumar

Learning Objectives

» describe how leader and follower replicas work in Kafka (to
record messages, handle fallover; etc.)

» apply the definition of "committed” messages to reason
about when messages (a) are acknowledged to producers
and (b) can be read by consumers

» configure Kafka and write producer/consumer code to
achieve "exactly once semantics”

Outline: Kafka Reliability

Kafka Replication
Fault Tolerance

Exactly-Once Semantics

Three brokers, 2 partitions, replication factor=|

broker servers
e

/M/ 7 8 9

‘clicks[l] msg msg msg msg

2 3 4 5

Three brokers, 2 partitions, replication factor=3

broker servers

each partition has one
leader and RF-|
follower replicas

clicks[0] msg msg msg
7 8 9

clicks[1] msg msg msg msg
2 3 4 5

clicks[1] msg msg msg msg
2 3 4 5

clicks[0] msg msg msg
7 8 9

clicks[1] msg msg msg msg
2 3 4 5

clicks[0] msg msg msg
7 8 9

leader replica

follower replica

leader replica

follower replica

follower replica

follower replica

Three brokers, 2 partitions, replication factor=3

f only here

broker servers

leader replica
/ clicks[1] ms
S I N follower replica
2 3 4 5
clicks[1] msg msg msg ms
TR | 1eader replica
2 3 4 5
* each partrtion has one ,
clicks[0] msg msg ms
leader and RF" S N follower replica
follower replicas /7 8 9
* producers only send
to leaders .
clicks[1] msg msg msg msg .
follower replica
2 3 4 5
clicks[0] msg msg msg .
follower replica
/7 8 9

Fetch Requests

broker servers

clicks[0]

msg msg

/7 8

msg

9

msg

10

clicks[1]

msg

2

msg

3

msg

4

msg

5

clicks[1]

msg

2 3

msg

msg

4

msg

5

each partition has one ,
leader and RF-| clicks[0] MSg Mg MSg M3
follower replicas /7 8 9 10
producers only send
to leaders
followers constantly clicks[1] msg msg msg msg
fetch from leaders, 2 3 4 5
just like consumers do

clicks[0] msg msg msg

/7 8 9

leader replica

follower replica

\ fetch

leader replica

follower replica

follower replica

follower replica

Followers: In-Sync and/or Lagging Behind

broker servers

IS [U)msg 'msg msg| msg 'msg [ms
A AR P R Tl | jeader replica
/7 8 9 10 11 12

« followers that are
"keeping up" with
leader messages are
called "in-sync”

e definition is tunable,
and depends on SIBS MY msg |msg | msg | msg | msg follower replica
factors like how 7 8 9 10 Il (in-sync)
recently a follower got
a batch with the most

last requested most-recent
message 6 seconds ago

recent messages last requested most-recent
* some flexibility: in- message 20 seconds ago
sync followers might
be a little behind the clicks[0] P follower replica
leader . .
7 8 (lagging behind)

Minimum In-Sync Replicas (Assume 2 Here)

broker servers

producer

min.insync.replicas
usually less than
replication factor

ISl msg ‘msg | msg| msg 'msg ‘msg

/7 8 9 10 11 12

last requested most-recent
message 36 seconds ago

last requested most-recent
message 50 seconds ago

clicks[0] msg msg msg msg

/7 8 9 10

leader replica

temporarily down

follower replica
(lagging behind)

overloaded

follower replica
(lagging behind)

Backoff: Not Enough Replicas Exception

broker servers

m il [U)'msg 'msg 'msg msg| msg |ms
4 A AR P R Tl | jeader replica

backoff

/7 8 9 10 11 12

* min.insync.replicas

e usually less than
replication factor

* reject some messages
until we have enough
responsive IN-sync

last requested most-recent

message 36 seconds ago temporarily down

follower replica

replicas: NotEnough- (lagging behind)
ReplicaskException
* bigger min: stronger
durability last requested most-recent
* smaller min: better message 50 seconds ago overloaded
write availability
clicks[0] msg msg msg msg follower replica
7 8 9 10 (lagging behind)

Outline: Kafka Reliability

Kafka Replication
Fault Tolerance

Exactly-Once Semantics

producer

What if the leader fails! Elect a2 new one!

partition temporarily
unavallable

need to new
leader (not democratic)
special "controller”
broker (chosen with help
of Zookeeper or KRaft)
elects an in-sync replica
as new leader

broker servers

crash

last requested most-recent
message 6 seconds ago

clicks[0] msg msg msg msg msg

/7 8 9 10 1l

last requested most-recent
message 20 seconds ago

clicks[0] msg msg

/7 8

leader replica

follower replica
(in-sync)

follower replica
(lagging behind)

Kafka Replica Failover

broker servers

llower reptc

last requested most-recent
message 6 seconds ago

IS msg 'msg ' msg | msg msg

. . leader replica
o failover takes some time 7 8 9 10 |1

e Note: Cassandra tries to
be highly available, so it

doesn't differentiate last requested most-recent

leader from follower message 20 seconds ago

replicas to avoid

downtime clicks[O] e follower replica

7 8 (lagging behind)

Some Messages Seen by Old Leader Lost

producer

 new leader decides what
goes at each offset

* It probably writes
different messages at
some offsets than what
old leader wanted there

 old leader doesn't
immediately get its job
back upon recovery

broker servers

clicks[0] msg msg msg msg msg IS
/7 8 9 10 Il

recovered

last requested most-recent
message 6 seconds ago

IS msg 'msg ' msg | msg msg

/7 8 9 10 1l

last requested most-recent
message 20 seconds ago

clicks[0] msg msg

/7 8

follower replica

leader replica

follower replica
(lagging behind)

Review "Committed":WhatsApp Acks Example

How to check read receipts (& Copy link

|ﬁ| Android " iIPhone I\ KaiOS

Check marks will appear next to each message you send. Here's what each one indicates:

. The message was successfully sent.

. The message was successfully delivered to the recipient's phone or any of their
linked devices.

. The recipient has read your message. https://faq.whatsapp.com/665923838265756

\ these are examples of (acknowledgements)

In distributed storage systems/databases, an ack means our data is committed.

means our data is "safe”, even if bad things happen. The definition
varies system to system, based on what bad things are considered. For example:
* anode could hang until rebooted; a node's disk could permanently fail
* arack could lose power;a data center could be destroyed

In Kafka's leader/follower replica design, what are some "bad things" we might worry
about!

Kafka: Committed Messages

Messages are when written to ALL in-sync replicas.

Depending on how many are in-sync, the strength of the guarantee can vary, but
min.insync.replicas lets us specify a worst case.

If number of concurrent broker failures < min.insync.replicas, then our committed
data is safe, even if the leader fails (because we can elect another in-sync replica,
and all in-sync replicas have all committed data).

Committed Messages

What is committed?

assume RF=3 and
minimum in-sync=2

s message 8 committed?
message | 0!

message | |?

TopHat

broker servers

clicks[0] msg msg msg msg

/7 8 9 10

last requested most-recent
message 6 seconds ago

IS msg 'msg ' msg | msg msg

/7 8 9 10 1l

last requested most-recent
message 20 seconds ago

clicks[0] msg msg

/7 8

follower replica
(in-sync)

leader replica

follower replica
(lagging behind)

Working with Committed Data

How can we avoid (unexpected system behavior) by
taking advantage of committed data!

Example |:Write Anomaly

Scenario:
* producer writes a message
* produce receives an ACK (acknowledgement) from the broker
* consumers never see the message

Cause: maybe the leader sent an ACK back, then crashed, before replicating the
message to the followers.

How to avoid it! Use strong acks.

Consumer initialization:
e KafkaProducer (..., acks=0)

don't wait for leader to send back ACK
e KafkaProducer (..., acks=1)

ACK after leader writes to its own log
e KafkaProducer (..., acks="all")

ACK after data is committed (slowest but strongest)

It you don't get an ACK that data i1s committed, usually best to retry in a loop (Kafka
can be configured to do this for you).

Example 2: Read Anomaly

Scenario:
* aconsumer reads a message
* there is an attempt to read the message again later (same consumer; or other)
* message Is gone, or changed

Cause: maybe the message was consumed from the leader before it was replicated
to the followers; then the leader crashed and the new leader doesn't have that
message for future consumption.

How to avoid it? Never read un-committed data.

The leader does this automatically.

Fetch Behavior: Consumer vs. Follower

leader replica

follower replica
(in-sync)

follower replica
(lagging behind)

broker servers

QIS msg 'msg 'msg| msg ' msg 'msg

7/

8 9 10% 11 12

committed

—

uncommitteq

clicks[0] msg msg msg msg

7/

8 9

o

clicks[0]

msg

7/

msg

8

fetch
consumer

fetch

consumer fetch: leader

send messages until it
knows they are committed
follower fetch: leader
send uncommitted messages

Outline: Kafka Reliability

Kafka Replication
Fault Tolerance

Exactly-Once Semantics

Semantics (Meaning)

Dictionary

Definitions from Oxford Languages - Learn more

) se-mantics
noun
noun: semantics; noun: logical semantics; noun: lexical semantics

the branch of linguistics and logic concerned with meaning. There are a number of branches and

Programming Example:
* Runtime bug: the program crashed, there was clearly a problem
* Semantic bug: you need to understand the of the results to say
whether or not the program behaved correctly

In Systems:
* what does it when we get we get an ACK, or a write returns’
* the meaning depends on how we configured things...

At-most-once semantics

producer = KafkaProducer (..., acks=1)
producer.send ("my—-topic", b"some-value")

With acks as O or | and no retry, a successful write means the data was recorded at
most once (ideally once, but If the leader crashes at a bad time, maybe zero times).

Using strong ACKs and retry

producer = KafkaProducer (..., acks="all", retries=10)
producer.send ("my-topic", b"some-value")

Keep retrying until success (within reason -- for example, 10 times)

Problem: there are two reasons we might not get an ACK:

message _message
‘»
x" ack

scenario | scenario 2

Using strong ACKs and retry

producer = KafkaProducer (..., acks="all", retries=10)
producer.send ("my-topic", b"some-value")

Keep retrying until success (within reason -- for example, 10 times)

Problem: there are two reasons we might not get an ACK:

message message
\x — —
—> —>
« ack « ack
scenario | scenario 2
message written once message written twice

A strong ACK with retry provides
because we're guaranteed |+ messages upon success

Are duplicate messages OK!?

Yes, if they're

"An operation Is called when the effect of performing the operation
multiple times is equivalent to the effect of performing the operation a single time"
~ Operating Systems: Three Easy Pieces, by Arpaci-Dusseau

x =0
y = 0 # 1f we just do once, is 1t the same?
set x(123)
def set x(value): set_x(123)
— set x(123)
global x —
x = value # if we just do once, is it the same?
inc y(3)
def inc y(value): inc_y(3)
global vy inc_y(3)
y += value

TopHat

Suppressing Duplicates

With some cleverness, we can make ANYTHING idempotent.

vy = 0
completed ops = set()

def 1nc y(value, operation 1id):
global vy
1f not operation id in completed ops:
y += value
completed ops.add(operation 1d)

inc y(3, 1251253)
inc v (3, 1251253) # no effect

inc y (3, 1251253) # no effect

inc y (3, 9870)
inc y (3, 9876) # no effect

inc y(1, 5454)

Exactly-Once Semantics: Producer Side

Upon a successful write, the message will be considered (duplicates
will be suppressed by brokers or consumers).

Producer settings:

* acks="al
* retry=N
* enableidempotence=True

With idempontence enabled, producers automatically generate unique operation
IDs and brokers suppress duplicates (this has an extra cost).

You can use enable.idempotence in Java, but the kafka-python package doesn't
support it.:
* need to handle it yourself
* often, messages have a unique ID anyway, so consumers can ignore dups
* Example: weather stations that emit one record per day -- if a consumer sees a
date for a station It has seen before, ignore it

Exactly-Once Semantics: Consumer Side

c = KafkaConsumer ("clicks",

.)
while True:
batch = c.poll (1000)

: consumer
. group | (gl)

clicks[0] A B 'C DR

0 I 3
|

2
el
3

0 I 2 4

*

Suppose consumer dies and is replaced by
another in the same group] T
* don't want replacement to miss any clicks[0] | 2
messages clicks[1] ! |
* don't want replacement to repeat any |

processing

Exactly-Once Semantics: Consumer Side

c = KafkaConsumer ("clicks",
group_id="gl " ,

.)
while True: Note! Committing messages
patch = c.poll (1000) ERNERLIITHETTRTET: eI

are two different ideas.

clicks[0]
. consumer
. group | (gl)
clicks[1] E :
0
gl offsets gl offsets
chcks[o] """"""""""""""""""" occasionally |
e R commit offsets e
clicks[1] clicks[I] I
Kafka consumer

Exactly-Once Semantics: Consumer Side

c = KafkaConsumer ("clicks",
group 1d="gl",

-)
while True:
batch = c.poll (1000)

clicks[0]
. consumer
. group | (gl)
clicks[1] E '
0
______________________ _ gIOffsets If we crash at a bad time, the gIOffsetS
clicks[0] 2 offsets the next consumer clicks[0] 4
B gets from Kafka will only be | e —
clicks[I] I : clicks[I] 3
; approximately correct. 5

Kafka consumer

Approach |: Manually Commit Offsets

Topic Partitions

c = KafkaConsumer ("clicks",
group 1d="gl",
enable auto commit=False,
-)
while True:
batch = c.poll (1000)

c.commit () # manually commit read offsets

clicks[0]

consumer

. group | (g)

clicks[1]
gl offsets gl offsets
clicks[0] clicks[0] 4
clicks[1] | clicks[1] ! 3
Kafka consumer

Approach 2: Externally Save Commits

c = KafkaConsumer ("clicks",
group 1d="gl",
.)
TODO: seek to previous position
while True:
batch = c.poll (1000)

Topic Partitions # TODO: write offsets to a DB or file

clicks[0] A B
0 I : consumer
. group | (gl)
clicks[1] E F G :
I 2

gl offsets
clicks[0] 4
clicks[1] E 3

consumer

Conclusion

Every part of the system has a part to play in and

Producer:

* requesting strong acks
* retry
* idempotence

Broker:
* replicating data to followers
 failing over to new leader
* sending acks
* helping producer suppress duplicates
* keeping uncommitted data hidden from consumers

Consumer:
* carefully handling read offsets
e sometimes suppressing duplicates (if not handled by producers+brokers)

