
[544] Spark Streaming
Meenakshi Syamkumar

Learning Objectives

• describe how Spark streams are broken into micro batches
that are processed with the existing RDD system

• select a suitable output mode for a given situation
• explain why certain operations (pivots, certain JOINs) are

not feasible for streaming operations
• optimize Spark streaming jobs, using watermarks, shuffle

partition configs, and caching in stream-static joins

Outline: Spark Streaming

DStreams

Grouped Aggregates

Watermarks

Pivoting

Joining

Exactly-Once Semantics

Review RDD Data Lineage: Transformations and Actions

def mult2(row):
 return (row[0], row[1] * 2)

def onlyA(row):
 return row[0] == "A"

data = [
 ("A", 1),
 ("B", 2),
 ("A", 3),
 ("B", 4)
]

table = sc.parallelize(data)
double = table.map(mult2)
doubleA = double.filter(onlyA)
doubleA.collect()

goal: get 2 times the second column wherever the first column is "A"

[('A', 2),
 ('A', 6)]

RDD RDD RDD

(table) (double) (doubleA)

list of
tuples

data
T T T A

(parallelize) (map) (filter) (collect)

Handling Data Changes: Re-Calculate Everything

def mult2(row):
 return (row[0], row[1] * 2)

def onlyA(row):
 return row[0] == "A"

data = [
 ("A", 1),
 ("B", 2),
 ("A", 3),
 ("B", 4),
 ("A", 5),
 ("C", 6)
]

RDD RDD RDD
("A", 1)
("A", 3)

data
(rows 1-4) T T T A

new data

RDD RDD RDD
("A", 1)
("A", 3)
("A", 5)

data
(rows 1-6) T T T A

Round 1

Round 2

re-doing work is wasteful!

Handling Data Changes: Incremental Computation

def mult2(row):
 return (row[0], row[1] * 2)

def onlyA(row):
 return row[0] == "A"

data = [
 ("A", 1),
 ("B", 2),
 ("A", 3),
 ("B", 4),
 ("A", 5),
 ("C", 6)
]

RDD RDD RDD
("A", 1)
("A", 3)

data
(rows 1-4) T T T A

new data

RDD RDD RDD

("A", 1)
("A", 3)
("A", 5)

data
(rows 5-6) T T T

T

Round 1

Round 2

sometimes we can build on the last round

RDD

A

T

cached in memory

Some DataFrames constantly grow

row

row

row

row

row

row

row

row

row

row

row

row

continuously growing table

Mini Batches

row

row

row

row

row

row

row

row

row

row

row

row

continuously growing table

trigger(processingTime="12 seconds")

mini batch

mini batch

Trigger Frequency

row

row

row

row

row

row

row

row

row

row

row

row

continuously growing table

trigger(processingTime="4 seconds")

DStream (Stateful)

row

row

row

row

row

row

row

row

row

row

row

row

continuously growing table

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

A Spark DStream is a series of RDDs

DStream:

DStream (Stateless)

row

row

row

row

row

row

row

row

row

row

row

row

continuously growing table

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

If we can compute on each batch without using state from previous computations, it is stateless.

DStream:

TopHat

Source => DStream => Sink

Source

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

A DStream continuously pulls
data from a source, transforms

it, and sends it to a sink

DStream:

Sink

• Kafka
• HDFS files
• Cassandra
• etc.

• Kafka
• HDFS files
• console
• etc.

many possible source/sink formats

Output Modes: Update, Complete, Append

operation

x x^2
3 9

4 25

x
6

2

x x^2
6 36

2 4

previous

outputbatch

operation

x count
A 7

B 8

x

B

C

previous

output
batch x count

A 7
B 9
C 1

operation

x count
A 7

B 8

x
B

B

previous

batch

update stats
set count=10
where x='B'

append complete

update

Different modes are available depending on
transformation and output format.

Examples:
• update: output is usually a DB
• append: generally narrow

transformations (previous output rows
cannot change)

• complete: often for aggregates
(otherwise too expensive so not
allowed)

Recovery
row

row

row

row

row

row

row

row

row

row

row

row

continuously growing table

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

DStream:

server died.
lost a partition
of this RDD.

Recovery:
• Spark usually doesn't replicate data because

RDDs tell us how to recompute lost data
• What if source data is no longer available?

(e.g., beyond Kafka retention time)
• What if it takes too long to recover?

Effecient Recovery
row

row

row

row

row

row

row

row

row

row

row

row

continuously growing table

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

DStream:

server died.
lost a partition
of this RDD.

Spark Optimizations:
• Often, every worker can help with recovery

work (i.e., recomputing data for an RDD)
• Checkpoint DStream once every 10

batches.

Recovery:
• Spark usually doesn't replicate data because

RDDs tell us how to recompute lost data
• What if source data is no longer available?

(e.g., beyond Kafka retention time)
• What if it takes too long to recover?

Outline: Spark Streaming

DStreams

Grouped Aggregates

Watermarks

Pivoting

Joining

Exactly-Once Semantics

Incremental Aggregations

Source

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

Sink

• many aggregations are easy to compute incrementally
• mode: update or complete (append usually not valid

because previous rows change)
• space for state is proportional to unique categories

animal count
shark 3

dolphin 8

seagull 35

animal beach

shark A

shark B

SELECT animal, COUNT(*)
FROM sightings
GROUP BY animal

Grouped Aggregate Internals: Shuffle Partitions

X Y

A 1
A 3

B 2
C 4

D 5
D 6
A 7

A 8
B 9

m
ac

hi
ne

 1
m

ac
hi

ne
 2

...

...

...

...

How many partitions will we have?
• spark.sql.shuffle.partitions (default 200) sets this -- fixed for whole application
• Often need to reduce for streaming jobs
• Batch jobs can automatically coalesce small partitions into bigger ones?
• Why not optimized for streaming? One challenge: coalescing based on data so

far probably isn't good for future data. Avoid re-shuffling existing counts. see Epilogue:
Apache Spark 3.0

Outline: Spark Streaming

DStreams

Grouped Aggregates

Watermarks

Pivoting

Joining

Exactly-Once Semantics

Grouping By Time Intervals

Source

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

Sink

timestamp coun
t12:00 on ... 10

12:15 on ... 8
12:30 on ... 35

animal timestamp

shark 12:32 on ...

shark 12:34 on ...

timestamp coun
t12:00 on ... 10

12:15 on ... 8
12:30 on ... 37

Observations:
• number of groups (and RAM needed) grows

indefinitely with time
• new batches contain recent times
• old times might occasionally pop up (Kafka delays)

(animals
 .groupBy(window("timestamp",
 "15 minute))
 .count())

Watermarks

Source

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

RDD RDD RDD
T T T

Sink

timestamp coun
t12:00 on ... 10

12:15 on ... 8
12:30 on ... 35

animal timestamp

shark 12:32 on ...

shark 12:34 on ...

(animals
 .withWatermark("timestamp",
 "8 hours")
 .groupBy(window("timestamp",
 "15 minute))
 .count())

timestamp coun
t12:00 on ... 10

12:15 on ... 8
12:30 on ... 37

Behavior:
• never throw away rows/aggregates

newer than watermark time
• might throw away older data to

save space

Spark can discard this running count after 8:15pm because it
is unlikely the pipeline will fall 8 hours behind

Outline: Spark Streaming

DStreams

Grouped Aggregates

Watermarks

Pivoting

Joining

Exactly-Once Semantics

Pivots

beach animal

A seagull

B seagull

B dolphin

C seagull

A seagull

A dolphin

B dolphin

beach seagull dolphin

A 2 1

B 1 2

C 1 0

pivot

what if we add a row with previously unseen values?

Pivots

beach animal

A seagull

B seagull

B dolphin

C seagull

A seagull

A dolphin

B dolphin

D shark

beach seagull dolphin shark

A 2 1 0

B 1 2 0

C 1 0 0

D 0 0 1

pivot

• new row: OK for batching and streaming
• new col: only OK for batching
• with streaming, it would cause confusion if columns

were added mid query (how would somebody even
query from our results?)

• some operations like pivot are supported for batching
but not streaming

Outline: Spark Streaming

DStreams

Grouped Aggregates

Watermarks

Pivoting

Joining

Exactly-Once Semantics

JOIN Scenarios

fixed size

fixed size

static-static
(previously covered)

growing

fixed size

stream-static

growing

stream-stream

growing

• Spark has at least some support for each scenario
• stream-stream can use an every increasing amout of

memory if we're not carefuly (need watermarking)

static-static review:
• shuffle sort merge join
• broadcast hash join

JOIN Scenarios

fixed size

fixed size

static-static
(previously covered)

growing

fixed size

stream-static

growing

stream-stream

growing

• Spark has at least some support for each scenario
• stream-stream can use an every increasing amout of

memory if we're not carefuly (need watermarking)

static-static review:
• shuffle sort merge join
• broadcast hash join

Stream-Static INNER JOIN

beach animal_id

A 3

B 3

A 2

C 4

sightings

what known animals do we see?

growing

SELECT beach, name
FROM sightings
INNER JOIN animals
ON sightings.animal_id=animals.id

beach name

A seagull

B seagull

A shark

growing

id name

1 dolphin

2 shark

3 seagull

animals

fixed

results

is the JOIN stateless?

Stream-Static LEFT JOIN

beach animal_id

A 3

B 3

A 2

C 4

sightings

are there any sightings of unknown animals?

growing

SELECT beach, animal_id
FROM sightings
LEFT JOIN animals
ON sightings.animal_id=animals.id
WHERE name IS NULL

beach animal_id

C 4

growing

id name

1 dolphin

2 shark

3 seagull

animals

fixed

results

Stream-Static RIGHT JOIN

beach animal_id

A 3

B 3

A 2

C 4

sightings

are there any animals that are never seen?

growing

SELECT name, beach
FROM sightings
RIGHT JOIN animals
ON sightings.animal_id=animals.id
WHERE beach IS NULL

name beach

dolphin NULL

fixed

id name

1 dolphin

2 shark

3 seagull

animals

fixed

results

why is it impossible to compute the results, even
though it would be easy for static-static?

Cannot RIGHT JOIN if right is static;
Cannot LEFT JOIN if left is static

beach animal_id

A 3

B 3

A 2

C 4

sightings

are there any animals that are never seen?

growing

SELECT name, beach
FROM sightings
RIGHT JOIN animals
ON sightings.animal_id=animals.id
WHERE beach IS NULL

name beach

dolphin NULL

fixed

id name

1 dolphin

2 shark

3 seagull

animals

fixed

results

we can never say an animal is never seen if we
keep seeing animals forever, so this query is

illogical (and unsupported by Spark)

JOIN Scenarios

fixed size

fixed size

static-static
(previously covered)

growing

fixed size

stream-static

growing

stream-stream

growing

• Spark has at least some support for each scenario
• stream-stream can use an every increasing amount of

memory if we're not carefully (need watermarking)

static-static review:
• shuffle sort merge join
• broadcast hash join

when possible, cache this.
It JOINs against every micro batch.
Don't want to re-read every time!

JOIN Scenarios

fixed size

fixed size

static-static
(previously covered)

growing

fixed size

stream-static

growing

stream-stream

growing

• Spark has at least some support for each scenario
• stream-stream can use an every increasing amount of

memory if we're not carefully (need watermarking)

static-static review:
• shuffle sort merge join
• broadcast hash join

Stream-Stream

date animal

4/13/23 seagull

4/14/23 seagull

4/14/23 shark

4/15/23 dolphin

sightings

how many sharks are seen on
days when the beach is closed?

growing

SELECT COUNT(*)
FROM sightings
INNER JOIN closures
ON sightings.date=closures.date
WHERE animal = 'shark'

date type

4/10/23 "all day"

4/15/23 "part day"

4/20/23 "all day"

closures

growing

challenge: we can't "forget" about this row if we might
later learn about a beach closure on the 14th (for

example, from a lagging Kafka stream)

solution: use watermarks (like for grouped aggregates)

note: Spark works without watermarks; it just keeps
using more memory indefinitely

Outline: Spark Streaming

DStreams

Grouped Aggregates

Watermarks

Pivoting

Joining

Exactly-Once Semantics

Exactly-Once Semantics

If a task crashes, we can restart a new one, but we don't want to:
• double count any row
• miss any row

Spark can achieve exactly-once semantics given 3 features
• your code is "deterministic" (does same thing each time given same inputs)
• source: it's possible to go back and re-read older inputs that the previous task

was processing when it crashed (Kafka makes this easy, within the retention
period)

• sink: it is "idempotent" (can suppress duplicates)

file sink (parquet files on HDFS) supports this --
Spark writes checkpoint files that identify which
output files correspond to which input messages

Parquet on HDFS

query = (df
 .writeStream
 .format("parquet")
 .option("path", ????)
 .option("checkpointLocation", ????)
 .start())

HDFS directory that will accumulate parquet files

HDFS directory where Spark stores
info about how to supress duplicates

when reading those parquet files

When Spark reads a directory of parquet files, it
automatically supresses duplicates. But be careful

reading individual parquet files in a directory yourself,
because then you might see those duplicates.

Conclusion

Spark streaming is frequent batch computing
• DStream is series of RDDs
• Most things we can do with regular DataFrames can be done with streams
• Not quite realtime, but fast crash recovery

Performance
• choose shuffle partition count carefully
• apply watermarks to limit memory consumption
• in stream-static JOIN, try to cache the static table

