[544] Spark Streaming

Meenakshi Syamkumar

Learning Objectives

» describe how Spark streams are broken into micro batches
that are processed with the existing RDD system

» select a surtable output mode for a given situation

* explain why certain operations (pivots, certain JOINs) are
not feasible for streaming operations

* optimize Spark streaming jobs, using watermarks, shuffle
partition configs, and caching in stream-static joins

Outline: Spark Streaming

DStreams

Grouped Aggregates
Watermarks
Pivoting

Joining

Exactly-Once Semantics

Review RDD Data Lineage: Transformations and Actions

data = | def mult?2 (row) :
("A", 1), return (row[0], row[l] * 2)
("B", 2),
("A", 3), def onlyA (row) :
("B", 4) return row[0] == "A"

goal: get 2 times the second column wherever the first column is "A"

table = sc.parallelize (data)
double = table.map (mult2)
doubleA = double.fi1lter (onlyA)
doubleA.collect ()

{ROD ' RoD | -
(double) | (doubler) A\

(filter) (collect)

Handling Data Changes: Re-Calculate Everything

data = | def mult?2 (row) :
return (row[0], row[l] * 2)

def onlyA (row) :

return row[0] == "A"
Round |
.. RDD +! RDD
T T A
Round 2
.. RDD +! RDD
T T

re-doing work is wasteful!

Handling Data Changes: Incremental Computation

data = | def mult?2 (row) :
return (row[0], row[l] * 2)

def onlyA (row) :
return row[0] == "A"

». RDD > RDD

sometimes we can build on the last round

Some DataFrames constantly grow

row
row

row

row

row

row

row

row

row

continuously growing table

Mini Batches

mini batch

trigger (processingTime="12 seconds")

mini batch
row

row

row

continuously growing table

Trigger Frequency

trigger (processingTime="4 seconds")

row

row

continuously growing table

DStream (Stateful)

row

row

continuously growing table

A Spark

B oo - Rop - RoD
| R U

— > RDD :—> RDD :—! RDD \—»
T~ {RBR i ——~{ koD ; TR

is a series of RDDs

DStream (Stateless)

row T e T

_|
_|

row

row

continuously growing table

If we can compute on each batch without using state from previous computations, it is

row —> RDD —>

TopHat

Source => DStream => Sink

Source
o [Kafka
o HDFS files
e (assandra
* efc.

DStream
RDD :——»: RDD :— RDD
------------ T e T
RDD :——: RDD :— RDD
'''''''''''''''''''''' Tt T
RDD :——»: RDD :— RDD

A DStream continuously pulls
data from a source, transforms
it, and sends it to a sink

many possible source/sink formats

Sink

Kafka
HDFS files
console
etc.

Output Modes: Update, Complete, Append

previous previous
_________ X | xA2 X | count
B 2 |
output
____________________ X2
operation — 6 i 36
2 4
append complete
previous Different modes are available depending on

X | count

update

update stats
set count=10
where x="'B'

transformation and output format.

Examples:

* update: output is usually a DB

* append: generally narrow
transformations (previous output rows
cannot change)

* complete: often for aggregates
(otherwise too expensive so not
allowed)

Recovery

DStream:

row : : : : ' lost a partition
of this RDD.

row

row 1 1 1 1 _|_ :----l-----:

continuously growing table

Recovery:
* Spark usually doesn't replicate data because

RDDs tell us how to recompute lost data
* What if source data is no longer available?
(e.g.,, beyond Kafka retention time)
* What if it takes too long to recover?

Effecient Recovery

DStream:

W : : : : : : lost a partition
of this RDD.

row

oW : : : —— Kb
continuously growing table l
Recovery: Spark Optimizations:
* Spark usually doesn't replicate data because * Often, every worker can help with recovery
RDDs tell us how to recompute lost data work (I.e., recomputing data for an RDD)
* What if source data is no longer available? * (Checkpoint DStream once every |0
(e.g.,, beyond Kafka retention time) batches.

* What if it takes too long to recover?

Outline: Spark Streaming

Grouped Aggregates
Watermarks
Pivoting

Joining

Exactly-Once Semantics

Incremental Aggregations

animal | count

...

..

..

Source Sink
SELECT animal, COUNT (*) * many aggregations are easy to compute incrementally
FROM sightings * mode: update or complete (append usually not valid

GROUP BY animal because previous rows change)
* space for state Is proportional to unique categories

Grouped Aggregate Internals: Shuffle Partitions

~

AN

T 5

e | . .

i

& ~

- -
—>
4,
»

N

c —>

=

-S —p

(4]

E —p
—

2
3
%,
T, 0, S,

How many partitions will we have7
. (default 200) sets this -- fixed for whole application
* Often need to reduce for streaming jobs
* Batch jobs can automatically coalesce small partitions into bigger ones!
* Why not optimized for streaming! One challenge: coalescing based on data so
far probably isn't good for future data. Avoid re-shuffling existing counts.

OREILLY
Learning

see Epilogue:
Apache Spark 3.0

Outline: Spark Streaming

Watermarks
Pivoting
Joining

Exactly-Once Semantics

Grouping By Time Intervals

timestamp | coun

..

T e T e T - l ------
Source ——! RDD \——! RDD :—' RDD '
______________________ [
RDD |——! RDD ‘\—— .o 90 15
'''''''''''''''''''''' L T

..

230 0n..} 37

Observations:
(animals * number of groups (and RAM needed) grows
.groupBy (window ("timestamp", indefinitely with tlme |
"15 minute)) * new batches contain recent times
.count ()) * old times might occasionally pop up (Kafka delays)

Watermarks

Spark can discard this running count after 8:15pm because it
is unlikely the pipeline will fall 8 hours behind

—— RDD :——: RDD 5—T>§ RDD 12000n ... 10
l 21500, 8
——{ RDD {——: RDD 5—T>§ RDD

timestamp | coun

Source

(animals

.withWatermark ("timestamp",
"8 hours")

.groupBy (window ("timestamp",
"15 minute))

.count ())

..
..

..

1230 on ...} 37

Behavior:
* never throw away rows/aggregates
newer than watermark time
* might throw away older data to
save space

Outline: Spark Streaming

Pivoting
Joining

Exactly-Once Semantics

Pivots

beach animal

"""""""" A el | B
""""""""""""""""""""""" Seag” seagull dolphin

B seagull | BN 00 A 2 ------------------------------ o

B dolphin | .

C seagull | ;

A seagull

A dolphin

B dolphin |

what if we add a row with previously unseen values?

Pivots

beach animal
"""""""" A seagl |
s ceagull |
s dolphin
"""""""" C seagil
"""""""" A seagull
"""""""" A dolphin |
s dolphin
"""""""" O shark

| i i >
beach seagull | dolphin | shark

..

A 2 I 0
""""""" 8 12 0o
"""""" c 1 o o
____________ e e e

new row: OK for batching and streaming

new col: only OK for batching

with streaming, it would cause confusion if columns
were added mid query (how would somebody even
query from our results?)

some operations like pivot are supported for batching
but not streaming

Outline: Spark Streaming

DStreams

Grouped Aggregates
Watermarks
Pivoting

Joining

Exactly-Once Semantics

JOIN Scenarios

static-static

(previously covered) stream-static stream-stream
I fixed size . fixed size . l
. . growing
fixed size growing growing
static-static review:
* shuffle sort merge join
* broadcast hash join * Spark has at least some support for each scenario

* stream-stream can use an every increasing amout of
memory If we're not carefuly (need watermarking)

JOIN Scenarios

static-static

(previously covered) stream-static stream-stream
I fixed size fixed size l
. . growing
fixed size growing growing
static-static review:
* shuffle sort merge join
* broadcast hash join * Spark has at least some support for each scenario

* stream-stream can use an every increasing amout of
memory If we're not carefuly (need watermarking)

Stream-Static INNER JOIN

animals
_____________ id | name what known animals do we see?
I dolphin
2 shark
3 . seagull
fixed SELECT beach, name
FROM sightings
INNER JOIN animals
sightings ON sightings.animal 1d=animals.id
beach 5 animal_id
s i results
............. A 3 beach l name
B 3
.. A seagull
A 2 T
-- B . seagull
C , 4 e
- A . shark
growing :
| growing

{

Stream-Static LEFT JOIN

animals
id ; name
""""""" Idolphm are there any sightings of unknown animals?
2 shark
3 seagull
fixed SELECT beach, animal id

FROM sightings

LEFT JOIN animals

sightings ON sightings.animal id=animals.id
: WHERE name IS NULL

beach é animal_id
_____________ {iuum""i""m""?m""m"“ results
_"m"m"§ ____________ é _____________ ? ______________ beach E animal_id
A 2 C 4
C : 4 .
- growing
growing ¢

¢

Stream-Static RIGHT JOIN

animals
id | name
""""""" | dolphin
2 shark
3 seagull
fixed
sightings
beach é animal_id
............. Ammmwmmmgmmmm
"mmmé é
............. Xmmmwmmmimmmm
""""""" c 4
growing

¢

are there any animals that are never seen!

SELECT name, beach

FROM sightings

RIGHT JOIN animals

ON sightings.animal 1d=animals.id
WHERE beach IS NULL

results

..

dolphin NULL
fixed

why is it impossible to compute the results, even
though it would be easy for static-static?

Cannot RIGHT JOIN if right is static;
Cannot LEFT JOIN if left is static

ammals are there any animals that are never seen!
id name
I dolphin
2 . shark
mm“mgm“mﬂ """" ;;{Ji """" SELECT name, beach
| & FROM sightings
fixed RIGHT JOIN animals
ON sightings.animal 1d=animals.id
WHERE beach IS NULL
sightings
beach animal_id resylts
------------- A 3 name beach
s | dobin | NULL
A 2 fixed
c 4 we can never say an animal is never seen if we
growing keep seeing animals forever, so this query is

! illogical (and unsupported by Spark)

when possible, cache this.

JOI N Scenarios It JOINs against every micro batch.

/ Don't want to re-read every time!

static-static

(previously covered) stream-static / stream-stream
I fixed size fixed size l
. . growing
fixed size growing growing
static-static review:
* shuffle sort merge join
* broadcast hash join * Spark has at least some support for each scenario

* stream-stream can use an every increasing amount of
memory If we're not carefully (need watermarking)

JOIN Scenarios

static-static

(previously covered) stream-static stream-stream
I fixed size fixed size l
. . growing
fixed size growing growing
static-static review:
* shuffle sort merge join
* broadcast hash join * Spark has at least some support for each scenario

* stream-stream can use an every increasing amount of
memory If we're not carefully (need watermarking)

Stream-Stream

closures
. how many sharks are seen on

date | type days when the beach is closed!?

..

..

SR S st A »
42023 | "all day" SELECT COUNT (™)
- FROM sightings
growing INNER JOIN closures
l ON sightings.date=closures.date
WHERE animal = 'shark'
sightings
date animal
4/13/23 | seagull challenge: we can't "forget" about this row if we might
4/14123 seagull later learn about a beach c.losure on the |4th (for
RIS N _— example, from a lagging Kafka stream)
4/14/23 : shark . |
e solution: use watermarks (like for grouped aggregates)

4/15/23 i dolphin
growing note: Spark works without watermarks; it just keeps

| using more memory indefinrtely

Outline: Spark Streaming

DStreams

Grouped Aggregates
Watermarks
Pivoting

Joining

Exactly-Once Semantics

Exactly-Once Semantics

If a task crashes, we can restart a new one, but we don't want to:

double count any row
MISS any row

Spark can achieve exactly-once semantics given 3 features

your code IS (does same thing each time given same inputs)
source: It's possible to go back and re-read older inputs that the previous task
was processing when 1t crashed (makes this easy, within the retention
period)

sink: It Is (can suppress duplicates)

file sink (parquet files on HDFS) supports this --
Spark writes checkpoint files that identify which
output files correspond to which input messages

Parquet on HDFS

HDFS directory that will accumulate parquet files

HDFS directory where Spark stores

query = (df info about how to supress duplicates
.writeStream when reading those parquet files
.format ()
.option (, 272727) x//////
.option (, 272727)
.start ())

When Spark reads a directory of parquet files, it
automatically supresses duplicates. But be careful
reading individual parquet files in a directory yourself,
because then you might see those duplicates.

Conclusion

Spark streaming Is frequent batch computing
* DStream is series of RDDs
* Most things we can do with regular DataFrames can be done with streams
* Not qurte realtime, but fast crash recovery

Performance
* choose shuffle partition count carefully
* apply watermarks to limit memory consumption
* In stream-static JOIN, try to cache the static table

