'544] The Cloud

Meenakshi Syamkumar

Learning Objectives

» recall different things that typically show up on a cloud billl

(for example, different types of network

» identify PaaS cloud offerings that are simi

/O)

ar to the open-

source systems we have been learning this semester

» describe BigQuery's relationship to other systems

Outline

Background
Resources

Billing Models

Platforms

The Beginning

Amazon Web Services (AWYS)
* Elastic Compute Cloud (EC2), rented VMs, launched in 2006

* "Infrastructure as as Service" (laaS) -- rent infrastructure (network, storage,
compute) instead of owning the hardware yourself.

Ubuntu Linux 22.04 // rented b>/ you
—
VM (ec? instance) VM (ec? instance)
VM (ec? instance) VM (ec? instance)

physical machine in a Amazon data center

"Sometimes you need a lot of processing power, and sometimes you need just a little.

~ Jeff Barr (https://aws.amazon.com/blogs/aws/amazon_ec?_beta/)

https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

VM Hours

Pricing summary Pricing comparison

Monthly estimate e oneVM for a month: about $25
° *

$25.46 about /44 hours/month (31%*24)

e /44\/Ms for an hour: about $25

That's about $0.03 hourly |
* same computation resources

Pay for what you use: no upfront costs and per second , L
* very different wait time

billing
ltem Monthly estimate Be careful!
2 vCPU + 4 GB $24.46 * programmers previously optimized
memory when things were too slow
* now we need to optimized when
10 GB balanced $1.00

<tent disk it Is too expensive
persisient ais . :
* costis not always obvious at the

Total $25.46 moment you're running a job
(need to do "back of the envelope'
estimates until you get a bill)

Other Cloud Services

AWS now has >200 services beyond EC2 (and growing).

[aaS (Infrastructure as a Service)
« EC2, other services that feel closer to raw hardware
* virtual disks, virtual network, some storage systems, etc.
* cheaptflexible -- you can deploy anything on 1t (Cassandra, Kafka, etc).

PaaS (Platform as as Service)

* Cloud provider has deployed systems on the infrastructure; you pay to use the
deployed system

* databases, application framework/platforms, ML training/deployment systems
* less flexible, easier to use

e often more expensive (though not necessarily more than doing it yourself due to
efficiencies available to cloud provider but not you)

Line between laa$ vs. Paa$ distinction is a bit subjective,

Lock In

Customers worry: what If the cloud provider increases the price! If it's hard to move to
a competing cloud, you're

PaaS: services are often unique, and it would be hard to move to a different cloud
providers.

laaS: services like VMs are more uniform -- it would be easier to switch to a different
cloud to find the cheapest place to rent VMs.

Data: cloud providers often make 1t free to bring data into the cloud (ingress) but
expensive to take it out (egress).

Major Cloud Providers Today

Cloud Infrastructure Services Market Q3 2022

(laaS, PaaS, Hosted Private Cloud) ﬂgf;\]::t

$50

% AWS

$40

- 21% Azure
1% GCP
$20

Worldwide Revenues ($B)

Next 20 25%

$10 Companies
Others 9%
$0
Q3 2017 Q3 2018 Q3 2019 Q3 2020 Q3 2021 Q3 2022

Source: Synergy Research Group

https.//www.srgresearch.com/articles/q3-cloud-spending-up-over- | | -billion-
from-202 | -despite-major-headwinds-google-increases-its-market-share

https://www.srgresearch.com/articles/q3-cloud-spending-up-over-11-billion-from-2021-despite-major-headwinds-google-increases-its-market-share

Numerous Regions Globally (GCP in 2024)

Netherlands * nland
London l Berlin
Belgium ———o o— Warsaw
Oregon 4 Toronto. o Montreal Paris — S Frankfurt
Salt Lake City o B | mbus Turin Zurich
Los Angeles ® o Tel Aviv : N
9 Dallas S Carolina e Dammam pelhi Osaka
° - o ®laiwan
Mexico “ A BELE ® Hong Kong
Mumbai
e Singapore
Jakartae
® Sao Paulo
[]
- Johannesburg e Sydney
Santiago ®
Melbourne

® Current region with 3 zones

A Future region with 3 zones

https://cloud.google.com/about/locations#regions

Outline

Resources
Billing Models

Platforms

Compute - Memory - Storage - Network

Machine configuration

General purpose Compute optimized Memory optimized v GPUs

Graphics processing units (GPUs) accelerate specific workloads on your instances such as
machine learning and data processing. Learn More [4

~ GPU type
NVIDIA T4

Number of GPUs can choose number
v J (2 M and type of GPUs

Enable Virtual Workstation (NVIDIA GRID)

Series

NT Google offers TPUs (tensor

Machine type processing units) -- custom
[n1-standard-1 (1 vCPU, 3.75 GB memory) v } hardware for ML. Works

with Py Torch and Tensortlow

vCPU Memory
1 3.75GB

(©

can choose number

of vCPUs thisVM 1s ~$400/month (or $0.50/hour)

Compute - Memory - Storage - Network

Forms in which to buy compute

* VMs on multi-tenant hosts (typical case): what we did this semester
* VMs on sole-tenant hosts (better isolation/security, $ | 000s/month)
* Containers (Kubernetes Engine)

* Serverless Functions (functions run when events happen; pay by the millisecond)

Multi-tenant host Sole-tenant node
VM 1 VM 2 VM 4 VM 1 VM 2 VM 4
VM 3 VM 3
Hypervisor Hypervisor
Host hardware Host hardware

https://cloud.google.com/compute/docs/nodes/sole-tenant-nodes

Compute - Memory - Storage - Network

[aaS
* memory Is often roughly proportional to CPU resources

* "memory optimized" VMs skew heavy on RAM
(very expensive! at high end >10 TB)

PaaS: often open-sources platforms provided as a service. Examples:
. (cache)
. (in-memory DB)

Compute - Memory - Storage - Network

on off on

Virtual Machines VM

-
-

vt ss [

HDD SSD SSD SSD HDD
(balanced) (extreme)

VM disks are
e can be attached, detached, re-attached to VMs

* different disk types offer different performance/price tradeoffs
 HDD (standard); SSD (balanced, SSD, extreme)
* price depends on size and type

Iltem Monthly estimate

memory
VM creation: 10 GB balanced cost when off (or when
persistent disk R ’ Oﬂ|>/ the VM is deleted)

Total $25.46

Compute - Memory - Storage - Network

region |

region 2

SN RN AN EEEEESEEEEEEEEEEEEEEEEEEEREER

Cloud hierarchy

. (approximate)
° (data center consisting of | or more nearby buildings)
’ (area of region with fast interconnect but usually common points of failure,

ike power; routers, etc)

Compute - Memory - Storage - Network

AWS Region AWS Region
e N ™)

" | Y N | Y

Image from Best Practices for Running Abache Cassandra on Amazon ECZ
(https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-cassandra-on-amazon-ec2/)

Fault tolerance

* deploy under the assumption that nodes in the same zone may reasonably all go
down together (e.g., due to power |0ss)

* being extra careful: assume a region can go down (e.g., tornado destroys couple
buildings)

Compute - Memory - Storage - Network

region |

region 2

SN RN AN EEEEESEEEEEEEEEEEEEEEEEEEREER
SN RN AN EEEEESEEEEEEEEEEEEEEEEEEEREER

HiNgress

egress

Clouds generally bill per GB of network /O

. s usually free (incentivize you to start using the service, charge to move
your data elsewhere

. rate 1s complicated (depends on many factors)

Compute - Memory - Storage - Network

region |

region 2

same
continent

Internet

Egress examples (ballpark for GCP in 2023, but very simplified):
. $0.085/GB
. $0.05/GB (Asia)
. $0.01/GB

’ free TopHat

Outline

Background
Resources

Billing Models

Platforms

Free Tier, Discounts at Scale (AWS Lambda Example)

AWS Lambda Pricing

Region: US East (Ohio) *

Architecture Duration
x86 Price
First 6 Billion GB-seconds / month

Next 9 Billion GB-seconds / month

Over 15 Billion GB-seconds / month

common billing model pattern

AN

recommendation: estimate your
expenses when you hit this point

unit price

$0.0000166667 for every GB-second

$0.000015 for every GB-second

total usage

>

"The AWS Lambda free tier
iIncludes one million free

requests per month and
400,000 GB-seconds of
compute time per month”

https://aws.amazon.com/
lambda/pricing/

$0.0000133334 for every GB-second

"Duration is calculated from the time
your code begins executing until it
returns or otherwise terminates,
rounded up to the nearest | ms*"

\

recommendation: check if you
have a large number of small
ops getting rounded up

On-Demand vs. Spot Instances

capacity/utilization for a region

physical capacity

\Iwasted capacity (unsold)
machines

usage

time of day

How to create incentives for customers!?
* use less at peak time
e use more at low times

Two VM deployment options

on-demand instances: constant (high) price. Can generally get aVM. Won't be
taken away from your arbitrarily. Used when capacity is needed at specific times.

spot Iinstances: price varies throughout day. If you're not willing to pay enough,
your computation waits for a cheaper price. VM might be interrupted
() once started. Excellent for once-a-day batch jobs.

Scaling and Billing

many (most?) VMs are mostly idle

but you pay the same rate for your VM based on the
configuration, regardless of how you actually use the VM

o[| 1.9%] Tasks: 55, 449 thr; 1 running
10| 2.0%] Load average: 0.08 0.08 0.03
Mem[|||II1II)LLDLLLLT)I3-20G/3.83G] Uptime: 3 days, 23:29:30
SwpL[ITIITEITETET] 461M/1024M]
582 root 20 @ 1275M 10264 6020 S 0.7 0.3 0:54.13 /usr/bin/google
928 root 20 0 1394M 9996 16 S 0.7 0.2 4:44.54 containerd --co
Models

* fixed:you configure what you want, then pay a constant amount. Low risk, often
wasteful, doesn't handle unexpected bursts. Example:VM instances.

* auto scaling: the cloud service detects high/low load and automatically increases/
decreases your reservation. Often cannot scale to zero. Example: Elastic Beanstalk

* pay as you go: pay for actual resources consumed with fine granularity. Example:
AWS LLambda.

Outline

Background
Resources

Billing Models

Platforms

Review: Google Architecture (early systems)

MapReduce (2004 paper) BigTable (2006 paper)
GFS: Google File System (2003 paper)

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

radical idea: base everything on lots of cheap, commodity hardware

Google (Papers) => Hadoop (open-source software)

HDFS

DataNode DataNode DataNode DataNode

Local FS Local FS Local FS Local FS

Systems both within the Google ecosystem and
Hadoop ecosystem have been evolving a LOT.

HDFS - Spark - Cassandra - Kafka

what might we use instead of these Hadoop

.] . ! ? . .
systems if we're using cloud services: analytics processing

transact|ohs processmg pub/sub
(applications) Spark

DataNode DataNode

Worker Worker

Local FS Local FS

Local FS Local FS

major systems we used this semester
(this shows one possible way they could relate to each other)

HDFS - Spark - Cassandra - Kafka

Cloud: Colossus
analytics processing

transactions processing
(applications)

_>

pub/sub

DataNode DataNode

Worker Worker

Local FS Local FS

Local FS Local FS

major systems we used this semester
(this shows one possible way they could relate to each other)

HDFS - Spark - Cassandra - Kafka

Cloud: Colossus

GCS (Google Cloud Storage)

Google: GFS (Google File System) » Colossus File System

(avoid single failure point, like a NameNode)

Hadoop: HDFS (Hadoop File System)

Colossus is indirectly available to customers via GCS and other services

* users can create containing "objects” (corresponding to files In
Colossus)

* buckets can be public or private

HDFS - Spark - Cassandra - Kafka

Cloud: Colossus |
anything that normally uses HDFS

HDFS Interface

GCS (Google Cloud Storage)

Google: GFS (Google File System) » Colossus File System

(avoid single failure point, like a NameNode)

Hadoop: HDFS (Hadoop File System)

Colossus is indirectly available to customers via GCS and other services

* users can create containing "objects” (corresponding to files In
Colossus)

* buckets can be public or private

* GCS connector for Hadoop implements HDFS interface over GCS
(https://github.com/GoogleCloudDataproc/hadoop-connectors/tree/master/gcs)

https://github.com/GoogleCloudDataproc/hadoop-connectors/tree/master/gcs

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery

analytics processing

transactions processing
(applications)

>>

pub/sub

DataNode DataNode

Worker Worker

Local FS Local FS Local FS Local FS

major systems we used this semester
(this shows one possible way they could relate to each other)

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery

BigQuery (query engine)

!

GCS Buckets
Colossus HDFS Google Sheets
(other sources)

BigQuery
* similar to Spark SQL

BigQuery (storage)

* query engine based on (2010 system in Google that replaced a lot of
MapReduce work)
* tightly integrated with BigQuery storage engine (that uses)

* can also run queries on other data sources

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery

BngueryEiquery engine)
BigQuery (storage)
GCS Buckets
Colossus HDFS Google Sheets
(other sources)

Blurred analytics archrtecture

. BigQuery query engine with BigQuery storage
. part of BigQuery used with another system

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery

BigQuery (query engine)

!

GCS Buckets
Colossus HDFS Google Sheets
(other sources)

Blurred analytics archrtecture

BigQuery (storage)

. BigQuery query engine with BigQuery storage
. part of BigQuery used with another system

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery

BigQuery (query engine) >

!

BigQuery (storage)

GCS Buckets
Colossus HDFS Google Sheets
(other sources)

Blurred analytics archrtecture

. BigQuery query engine with BigQuery storage
. part of BigQuery used with another system

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery

BigQuery (query engine)

BigQuery (storage)
GCS Buckets
file f t...
Ile Torma Google Sheets
HDFS
(other sources)

for analytics, we'll want a format...
* Parquet
 ColumnlO

» (Capacitor

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery OREILLY .
Google BigQuery

The Definitive Guide
protocol buffers (protobufs)

* some protobufs at Google had grown to have [00s of
thousands of columns

« OK for applications/logging, horrible for analysis

Valli Laksh
protobuf P Jordan Tigani

protobuf

FOWS

protobuf

ColumnlO
format

col-oriented format

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery OREILLY |
Google BigQuery
The Definitive Guide

protocol buffers (protobufs)

* some protobufs at Google had grown to have [00s of
thousands of columns

« OKfor applications/logging, horrible for analysis

BigQuery
(Dremel)

Valliappa Lakshmanan
& Jordan Tigani

* Dremel (used in BigQuery) originally used ColumnlO files

¢ ColumnlO inspired Parquet files (introduced by Twitter+Cloudera)
https://blogtwittercom/engineering/en_us/a/20 | 3/dremel-made-simple-with-parquet

https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery

Capacrtor Format
* sucessor to ColumnlO in Google
* optimized for repeated values

column:

. apple
BigQuery apple
(Dremel) apple

banana
banana

apple
apple
apple
apple

OREILLY

Google BigQuery
The Definitive Guide

Valliappa Lakshmanan
& Jordan Tigani

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery OREILLY |
Google BigQuery

The Definitive Guide

Capacrtor Format
* sucessor to ColumnlO in Google
* optimized for repeated values

Valliappa Lakshmanan
& Jordan Tigani

column:
3:apple
BigQuery 2: banana
(Dremel) 4: apple

optimization:

HDFS - Spark - Cassandra - Kafka

Cloud: BigQuery OREILLY |
Google BigQuery

The Definitive Guide

Capacrtor Format
* sucessor to ColumnlO in Google
* optimized for repeated values

Valliappa Lakshmanan
& Jordan Tigani

column:
3| L
BigQuery) optimization:
(Dremel) 4+ |
optimization:
{"apple":|

"banana': 2}

JopHat

HDFS - Spark - Cassandra - Kafka

Cloud: BigTable

analytics processing

transact|ohs processmg pub/sub
(applications) Spark

1

Worker Worker DataNode

Local FS Local FS

Local FS

major systems we used this semester
(this shows one possible way they could relate to each other)

DataNode

Local FS

HDFS - Spark - Cassandra - Kafka

Cloud: BigTable

HBase apps

—> HBase

BigTable apps

&

meta- data
data

data model,
storage layout

partitioning+replication . Cassandra

\ DynamoDB

* Biglable is directly available to customers as a GCP service

e |t's now built on Colossus. "The original motivation for building Colossus was to solve scaling
imits we experienced with Google File System (GFS) when trying to accommodate metadata

related to Search.

Dynamo

" (httpsi/cloud.google.com/blog/products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system)

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

HDFS - Spark - Cassandra - Kafka

Cloud: BigTable
HBase apps

HBase APl BigTable apps HBase apps
—> HBase

data model,
storage layout

partitioning+replication . Cassandra

\

DynamoDB

Dynamo

* Some apps can directly use the BigTable AP

* Biglable also supports the similar HBase APl now

(presumably to bring back HBase users who don't want the hassle of deployment, or
of re-writing their code to use a managed cloud service)

HDFS - Spark - Cassandra - Kafka

Cloud: Kafka, actually
analytics processing

transact|ohs processmg pub/sub
(applications) Spark

Cassandra

Worker Worker

HDFS

DataNode DataNode

Local FS Local FS Local FS Local FS

major systems we used this semester
(this shows one possible way they could relate to each other)

HDFS - Spark - Cassandra - Kafka

() CONFLUENT

aws

PARTNER GO gle CIOUd =I Xlzifjrrzsoﬁ

AWS Google Microsoft - Partner

Tier: Premier Tier: Premier

Tier: Premier

Partner Type: CSP Partner Type: CSP Partner Type: CSP

Primary Geo: North America Primary Geo: Global Primary Geo: North America

CONFLUENT

TECHNOLOGY PARTNER

W

TECHNOLOGY PARTNER

W

TECHNOLOGY PARTNER

W

https://partners.confluent.io/English/directory/searchfO=Partner+ Iype&fOvO=CSP

* Apache Kafka - open source

* Confluent Kafka - closed source, more features, available as service is the major cloud
providers

https://partners.confluent.io/English/directory/search?f0=Partner+Type&f0v0=CSP

Aside: Open Source Software and Business Models

Open-Source Licenses (very rough overview -- I'm not a lawyer!)

. . If you make improvements and sell/distributed the software, your
code needs to be made open source too

. :fine to take open source code, make closed-source
improvements, and sell a product based on it. Minimal requirements (e.g,
related to attribution, liability)

. :similar to MIT and BSD, but relates to patents (not just copyright).

All the major systems we have learned this semester (HDFS, Spark, Cassandra,
Kaftka) are distributed under the Apache license. Thus, it is possible to build
companies around closed-source variants of these systems. Examples:

* Databricks (Spark)
* Datastax (Cassandra)
¢ Confluent (Kafka)

Conclusions

Cloud keeps increasing in importance
* total global revenue
* cloud providers
* number of services for each provider

Compute, memory, storage, and network resources are all rentable.

Even though you pay a markup to the cloud provider; it's often cheaper than
owning your own hardware if your usage fluctuates a lot and most resources
are idle during low times.

