
[544] BigQuery ML
and Cost Management

Meenakshi Syamkumar

Learning Objectives

• create and use machine learning models with BigQuery
• describe the relationship between BigQueries two billing

models (capacity and on-demand)
• manage and inspect BigQuery costs

Outline
BiqQuery ML Basics

Feature Transformation

Cost Management

Train/Test Split
BigQuery provides a DATA_SPLIT_METHOD config, but its a bit unusual.

Default behavior depends on dataset
• <500 rows: 100% training data
• <50K rows: 80% training data
• bigger : 10K rows for test, rest for training

Documentation: "When there is a data split, you can find the temporary split results
(Training Data, Evaluation Data) on the Model Details page in the BigQuery Console and
the model API data_split_result field. These split tables will be saved for 48 hours. If you
will need them for longer than 48 hours, copy them out of the anonymous dataset for
longer retention."

Recommendation:
• split manually using rand()<ratio in SQL (rand gives num between 0 and 1)
• disable BiqQuery splitting: DATA_SPLIT_METHOD="NO_SPLIT"

Training

features
label

(to predict)

Step 1: write a query to select both features and label

CREATE OR REPLACE MODEL myproj.mydataset.mymodel
OPTIONS(MODEL_TYPE='LINEAR_REG',
 INPUT_LABEL_COLS=['y'])
AS

SELECT yesterday_temp, humidity, temp
FROM weather

Training
Step 2: choose a model name and create it

CREATE OR REPLACE MODEL myproj.mydataset.mymodel
OPTIONS(...)

AS

SELECT yesterday_temp, humidity, temp
FROM weather

projects
datasets

tables
models

hierarchy:

name

Training
Step 3: choose type of model

CREATE OR REPLACE MODEL myproj.mydataset.mymodel
OPTIONS(MODEL_TYPE='LINEAR_REG')

AS

SELECT yesterday_temp, humidity, temp
FROM weather

Options: LINEAR_REG, LOGISTIC_REG, KMEANS, MATRIX_FACTORIZATION,
PCA, AUTOENCODER, AUTOML_CLASSIFIER, AUTOML_REGRESSOR,
BOOSTED_TREE_CLASSIFIER, BOOSTED_TREE_REGRESSOR,
RANDOM_FOREST_CLASSIFIER, RANDOM_FOREST_REGRESSOR,
DNN_CLASSIFIER, DNN_REGRESSOR, DNN_LINEAR_COMBINED_CLASSIFIER,
DNN_LINEAR_COMBINED_REGRESSOR, ARIMA_PLUS, ARIMA_PLUS_XREG,
TENSORFLOW, TENSORFLOW_LITE, ONNX, XGBOOST

Training
Step 4: indicate label column (others are assumed features)

CREATE OR REPLACE MODEL myproj.mydataset.mymodel
OPTIONS(MODEL_TYPE='LINEAR_REG',
 INPUT_LABEL_COLS=['temp'])
AS

SELECT yesterday_temp, humidity, temp
FROM weather

Using Trained Models
Each of these functions return a table related to a model.

what are the coefficients used to multiply features?
ML.WEIGHTS(MODEL ????)

what are the predictions given the features?
ML.PREDICT(MODEL ????, (????))

how well do we predict (various metrics) given the features+label?
ML.EVALUATE(MODEL ????, (????))

SQL query to get features

SQL query to get features and label

Using Trained Models
Each of these functions return a table related to a model.

what are the coefficients used to multiply features?
ML.WEIGHTS(MODEL ????)

example:

SELECT *
FROM ML.WEIGHTS(MODEL mymodel)

TopHat, Demos

FINAL EXAM CUT OFF POINT

Outline
BiqQuery ML Basics

Feature Transformation

Cost Management

Patterns and Features

x (feature)

y (label)

x (feature)

y (label)

cat dog mouse

non-linear patterns
• some models (e.g., DNNs)

naturally handle this
• others (e.g.,

LinearRegression) do not

categorical features
• some models (e.g., DTs)

naturally handle this
• others (e.g.,

LinearRegression) do not

Feature Transformation

x^2

y (label) y (label)

1,0,0 0,1,0 0,0,1

non-linear patterns
• can introduce new features

than are computed as
functions of originals (e.g.,
x2=x^2)

• a linear model over the
new features corresponds
to a non-linear model over
the originals

categorical features
• encode categorical features

as numbers (e.g., as matrix
of zeros and ones for
OneHot encoding

Demos

Outline
BiqQuery ML Basics

Feature Transformation

Cost Management

Resources

Colossus

one region

...

• Query engine: Dremel running on many servers with lots of CPU+RAM
• Storage engine: Capacitor files in Colossus file system

(not clear if Dremel+Colossus servers are co-located on same machines)

other regions...

lots
of

servers

zone A zone B

Resources

Colossus

one region

...

Resources
• compute/memory
• Colossus storage
• Colossus I/O

other regions...

lots
of

servers

zone A zone B

capacity billing
on-demand billing

BigQuery Slots

Colossus

one region

• the compute and memory resources of the servers are broken down into
a pool of "slots"

• a slot has approximately ½ cores and 1 GB of RAM
• if newer servers get added with faster CPUs or different core/memory

ratios, the exact resources can change a bit

other regions...

pool
of

slots

Billing Model 1: Capacity Pricing (compute based)

Colossus

one region

• customers can pay a fixed rate for slot capacity (about $0.96 for 1 slot day)
• whether or not they use the slot does not affect the cost
• reservations aren't fixed to one location (execution will ideally happen near the data).
• slightly more expensive than the e2-medium instances we used this semester, which have

2x compute and 4x memory resources (but not free Colossus I/O). But VMs are IaaS and
BigQuery is PaaS.

customer 1: 4 slots
reserved, 2 running

customer 2

Billing Model 1: Capacity Pricing (compute based)

Colossus

one region

Excess capacity cases:
• not reserved
• reserved, but not currently used

Billing Model 2 (On-Demand) draws from this excess...

customer 1: 4 slots
reserved, 2 running

customer 2

Billing Model 2: On-Demand Pricing (I/O based)

Colossus

one region

Pricing:
• pay for Colossus I/O after free tier (about $6.25/TB)
• slots (compute/memory) are free
• use whatever is left over from capacity-based usage (up to 2000 slots!)
• preemptible: a task running in a slot can be interrupted (if a reservation is suddenly

needed or new on-demand jobs start -- want to share capacity between these fairly)

customer 1: 4 slots
reserved, 2 running

customer 2

Billing Model 2: On-Demand Pricing (I/O based)

Colossus

one region

Pricing:
• pay for Colossus I/O after free tier (about $6.25/TB)
• slots (compute/memory) is complementary
• use whatever is left over from capacity-based usage (up to 2000 slots!)
• preemptible: a task running in a slot can be interrupted (if a reservation is suddenly

needed or new on-demand jobs start -- want to share capacity between these fairly)

customer 1: 4 slots
reserved, 2 running

customer 2

BigQuery tasks are atomic and idempotent so we have
exactly-once semantics. Don't want interrupted and

restarted tasks to cause duplicate results.

Comparison
Capacity Billing

• very predictable costs
• very predictable performance (other customers don't affect you)
• discounts if commit to buying lots of cores for long time (e.g., a year)
• pay when using nothing
• can't use lots of resources for a short while

On-Demand Billing
• pay-as-you-go: use nothing, pay nothing
• if resources are available, you can use 1000 cores at once -- very fast!
• how to make sure you don't accidentally spend more than intended?

Estimating/Capping On-Demand Costs

Options:
• Limit per day:

https://console.cloud.google.com/iam-admin/quotas

• Estimate before run:
job_config=bigquery.QueryJobConfig(dry_run=True)

• Set max per query:
bigquery.QueryJobConfig(maximum_bytes_billed=200*1024**2)

• See most expensive queries:
cs320-f21.region-us.INFORMATION_SCHEMA.JOBS_BY_PROJECT

https://console.cloud.google.com/iam-admin/quotas

Demos

Partitioning
A B C D

5/1/23 1 2 3

5/1/23 4 5 6

5/2/23 7 8 9

5/2/23 10 11 12

A B C D
5/1/23 1 2 3

5/1/23 4 5 6

A B C D
5/2/23 7 8 9

5/2/23 10 11 12

• each unique value in a partition column corresponds to a partition (basically
a mini table)

• WHERE filters can limit which mini tables need to be read (saving I/O cost)
• limited options for types (e.g., ints, dates)
• only works well when substantial data per partition

Clustering
A B C D

5/1/23 1 2 3

5/1/23 4 5 6

5/2/23 7 8 9

5/2/23 10 11 12

• semi sorted: sub files are non overlapping on cluster key, but no order within file
• all types, combinations of columns possible
• some queries will be cheaper because they can look at subset of files

A B C D
5/1/23 1 2 3

A B C D
5/2/23 7 8 9

5/1/23 4 5 6

A B C D
5/2/23 10 11 12

B range: 1 to 1 B range: 10 to 10

B range: 4 to 7

Clustering
A B C D

5/1/23 1 2 3

5/1/23 4 5 6

5/2/23 7 8 9

5/2/23 10 11 12

• some min ratio of data is clustered
• don't want few new rows to force total reorg

A B C D
5/1/23 1 2 3

A B C D
5/2/23 7 8 9

5/1/23 4 5 6

A B C D
5/2/23 10 11 12

B range: 1 to 1 B range: 10 to 10

B range: 4 to 7

A B C D
5/2/23 5 1 2

5/1/23 12 3 4

clustered

unclustered

Demos

